分析 (Ⅰ)由已知推导出AD⊥AB,AD⊥PA,由此能证明AD⊥平面PAB,从而得到AD⊥PB.
(Ⅱ)取AB的中点E,连接PE,CE,由已知推导出$PE⊥AB,PE=\sqrt{3}$,PE是四棱锥P-ABCD的高,由此能求出四棱锥P-ABCD的体积.
(Ⅲ)由PE⊥平面ABCD,得∠PCE即为PC与平面ABCD所成的角,由此能求出tanθ的值.
解答 (Ⅰ)证明:∵在四棱锥P-ABCD中底面ABCD是矩形,
∴AD⊥AB,
∵AD=PA=2,$PD=2\sqrt{2}$,
∴AD⊥PA,…(1分)
又∵AB∩PA=A,∴AD⊥平面PAB…(3分)
∵PB?平面PAB,∴AD⊥PB.…(4分)
(Ⅱ)解:取AB的中点E,连接PE,CE,
∵PA=PB=AB=2,∴$PE⊥AB,PE=\sqrt{3}$,…(6分)
∵AD⊥平面PAB,AD⊆平面ABCD,
∴平面PAB⊥平面ABCD,∴PE⊥平面ABCD,
∴PE是四棱锥P-ABCD的高,…(8分)
∴四棱锥P-ABCD的体积$V=\frac{1}{3}×2×2×\sqrt{3}=\frac{{4\sqrt{3}}}{3}$.…(9分)
(Ⅲ)解:∵PE⊥平面ABCD,
∴∠PCE即为PC与平面ABCD所成的角,…(10分)
∵$CE=\sqrt{B{C^2}+B{E^2}}=\sqrt{5}$…(11分)
∴$tanθ=\frac{PE}{CE}=\frac{{\sqrt{3}}}{{\sqrt{5}}}=\frac{{\sqrt{15}}}{5}$.…(13分)
点评 本题考查异面直线垂直的证明,考查四棱锥的体积的求法,考查角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com