【题目】设椭圆C: ,定义椭圆C的“相关圆”方程为,若抛物线的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和其两个焦点构成直角三角形。
(I)求椭圆C的方程和“相关圆”E的方程;
(II)过“相关圆”E上任意一点P作“相关圆”E的切线l与椭圆C交于A,B两点,O为坐标原点。
(i)证明∠AOB为定值;
(ii)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围。
【答案】(1) (2) (i)见解析(ii)
【解析】试题分析:(Ⅰ)由抛物线的焦点与椭圆的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形,得到 由此能求出椭圆的方程.
进而求出“相关圆”的方程.
(Ⅱ)当直线的斜率不存在时,直线方程为 ;当直线的斜率存在时,设其方程为,代入椭圆方程,得 由此利用根的判别式、韦达定理、直线与圆相切,结合已知条件推导出为定值.
(ii)要求的面积的取值范围,只需求弦长的范围,由此利用椭圆弦长公式能求出面积的取值范围.
试题解析:(Ⅰ)因为若抛物线的焦点为与椭圆的一个焦点重合,所以
又因为椭圆短轴的一个端点和其两个焦点构成直角三角形,所以
故椭圆的方程为,
“相关圆”的方程为
(Ⅱ)(i)当直线的斜率不存在时,不妨设直线AB方程为,
则所以
当直线的斜率存在时,设其方程设为,设
联立方程组得,即,
△=,即
因为直线与相关圆相切,所以
为定值
(ii)由于是“相关圆”的直径,所以,所以要求面积的取值范围,只需求弦长的取值范围
当直线AB的斜率不存在时,由(i)知
因为
,
时为所以,
所以,所以
当且仅当时取”=”
②当时,.|AB |的取值范围为
面积的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程1表示焦点在x轴上的双曲线.
(1)命题q为真命题,求实数k的取值范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行了一次“环保知识竞赛”活动. 为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量和频率分布直方图中的,的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在[80,90)的学生人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆经过抛物线与坐标轴的三个交点.
(1)求圆的方程;
(2)经过点的直线与圆相交于,两点,若圆在,两点处的切线互相垂直,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com