精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与曲线的交点为,求面积的最大值.
(1);(2).

试题分析:(1)根据抛物线的焦点是椭圆的短轴长,可以求出,再根据离心率,从而能够求出;(2)设出点坐标,从而写出的方程,根据椭圆的对称性能够表示出的面积,联立直线与椭圆,求出代入到的面积,进一步表示出面积,根据均值不等式能够求出面积的最大值.
试题解析:(1)抛物线的焦点为,∴
又椭圆离心率,∴
所以椭圆的方程为
(2)设点,则,连轴于点
由对称性知:
    得:

(当且仅当时取等号)

面积的最大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的左焦点为,左、右顶点分别为,上顶点为,过三点作圆  
(Ⅰ)若线段是圆的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于,交轴于,求的最大值  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长是,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别是椭圆的左、右焦点,点P在椭圆上,若△为直角三角形,则△的面积等于__   __.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程表示椭圆,则的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线围成的矩形的面积为8,
求椭圆的方程;
(2)若为坐标原点),求证:
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,

(Ⅰ)求直线的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,如图,已知椭圆C的上、下顶点分别为AB,点P在椭圆C上且异于点AB,直线APPB与直线ly=-2分别交于点MN.

(1)设直线APPB的斜率分别为k1k2,求证:k1·k2为定值;
(2)求线段MN长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

同步练习册答案