精英家教网 > 高中数学 > 题目详情
10.如图,正方体ABCD-A1B1C1D1的棱长为1,P对角线BD1的三等分点,P到直线CC1的距离为$\frac{\sqrt{5}}{3}$

分析 如图所示,连接B1D1,作MP∥B1B,连接C1M,则C1M等于P到直线CC1的距离,利用余弦定理,求出C1M即可.

解答 解:如图所示,连接B1D1,作MP∥B1B,连接C1M,则C1M等于P到直线CC1的距离.
∵P对角线BD1的三等分点,
∴B1M=$\frac{\sqrt{2}}{3}$,
∴C1M=$\sqrt{1+\frac{2}{9}-2×1×\frac{\sqrt{2}}{3}×\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{5}}{3}$,
∴P到直线CC1的距离等于$\frac{\sqrt{5}}{3}$.
故答案为:$\frac{\sqrt{5}}{3}$.

点评 本题考查求P到直线CC1的距离,考查余弦定理的运用,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a,}\overrightarrow{b}$满足$|\overrightarrow{a}|$=$\sqrt{3}$,$|\overrightarrow{b}|$=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$2\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,若B=45°,c=3$\sqrt{2}$,b=2$\sqrt{3}$,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sinx•cosx>0,则x在一或三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.tanα,tanβ为方程x2-2x-1=0的根,则tan(α+β)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若2cos($\frac{π}{2}$-α)-sin($\frac{3}{2}$π+α)=-$\sqrt{5}$,则tanα=(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠A=120°,K、L分别是AB、AC上的点,且BK=CL,以BK,CL为边向△ABC的形外作正三角形BKP和正三角形CLQ.证明:PQ=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在四棱锥S-ABCD中,四边形ABCD是菱形,SD⊥平面ABCD,P为SB的中点,Q为BD上一动点.AD=2,SD=2,∠DAB=$\frac{π}{3}$.
(Ⅰ)求证:AC⊥PQ;
(Ⅱ)当PQ∥平面SAC时,求四棱锥P-AQCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$m=\sqrt{3}+\sqrt{5}$,$n=\sqrt{2}+\sqrt{6}$,则下列结论正确的是(  )
A.m<nB.n<m
C.n=mD.不能确定m,n的大小

查看答案和解析>>

同步练习册答案