精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)满足f(x)=-f(x+数学公式),且f(0)=1,则f(2010)=________.

1
分析:由已知f(x)=-f(x+)可得,f(x+3)=-f(x+)=f(x),∴3是函数f(x)的一个周期,从而利用周期性可求得f(2010)的值.
解答:由已知可得,f(x+)=-f(x),
∴f(x+3)=f((x+)+)=-f(x+)=-[-f(x)]=f(x).
∴3是函数f(x)的一个周期.
∴f(2010)=f(670×3+0)=f(0),
又f(0)=1,
∴f(2010)=1.
故答案为1.
点评:本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键.若定义在R上的函数f(x)满足f(x+m)=-f(x)(m≠0),则2m为函数f(x)的一个周期.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案