精英家教网 > 高中数学 > 题目详情
i
j
为直角坐标平面内x、y轴正方向上的单位向量,若向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

(1)求动点M(x,y)的轨迹方程?并指出方程所表示的曲线;
(2)已知点A(0,1},设直线l:y=
1
2
x-3与点M的轨迹交于B、C两点,问是否存在实数m,使得
AB
AC
=
9
2
?若存在,求出m的值;若不存在,说明理由.
分析:(1)根据向量的表达式,可推断出点M(x,y)到两个定点F1(-m,0),F2(m,0)的距离之差4.讨论m的值,根据双曲线的定义判断出其轨迹为双曲线,进而根据c和a,求得b,则其方程可得.
(2)设将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系利用向量数量积的坐标公式即可求得m值,从而解决问题.
解答:解:(1)∵向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

∴点M(x,y)到两个定点F1(-m,0),F2(m,0)的距离之差4.
由定义得:
当m=2时,M的轨迹是一条射线,方程为:
y=0,(x≥2)…(2分)
当m>2时,M的轨迹是一支双曲线,方程为:
 
x2
4
-
y2
m 2-4
=1(x≥2). …(6分)
(2)∵直线l与M点轨迹交于B、C两点,
∴M的轨迹方程为:
 
x2
4
-
y2
m 2-4
=1(x≥2).
y=
1
2
x-3
x2
4
-
y2
m 2-4
=1
⇒(m2-5)x2+12x-36-4(m2-4)=0,
设B(x1,y1),C(x2,y2),则x1+x2=
-12
m 2-5
,x1x2=
-4m 2-20
m 2-5
AB
AC
=
9
2

∴x1x2+(y1-1)(y2-1)=
9
2

5
4
x1x2-2(x1+x2)+16=
9
2

∴m2=9,m=±3,
∵m≥2,∴m=3.
点评:本题主要考查了直线与圆锥曲线的综合问题.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y∈R,i,j为直角坐标平面内x,y轴正方向上的单位向量,若a=(x+1)i+yj,b=(x-1)i+yj,|a|+|b|=4.
(I)求点M(x,y)的轨迹C的方程;
(II)过点(0,m)作直线l与曲线C交于A,B两点,若|
OA
+
OB
|=|
OA
-
OB
|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y∈R,
i
j
为直角坐标平面内x、y轴正方向上的单位向量,
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点,设
OP
=
OA
+
OB
,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,
i
j
为直角坐标平面内x轴y轴正方向上的单位向量,若
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点AB,满足(1)直线AB过点(0,3),(2)若
OP
=
OA
+
OB
,则OAPB为矩形,试求AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西山区模拟)设x,y∈R,
i
j
为直角坐标平面内x,y轴正方向上单位向量,若向量
a
=(x+
3
)
i
+y
j
b
=(x-
3
)
i
+y
j
,且|
a
|+|
b
|=2
6

(1)求点M(x,y)的轨迹C的方程;
(2)若直线L与曲线C交于A、B两点,若
OA
OB
=0
,求证直线L与某个定圆E相切,并求出定圆E的方程.

查看答案和解析>>

同步练习册答案