分析 利用同角三角函数的基本关系式求出正弦函数值,然后利用两角差的余弦函数求解即可.
解答 解:cosα=$\frac{1}{5}$,α∈(0,$\frac{π}{2}$),则sinα=$\sqrt{1-{cos}^{2}α}$=$\frac{2\sqrt{6}}{5}$,
cos(α-$\frac{π}{3}$)=cosαcos$\frac{π}{3}$+sinαsin$\frac{π}{3}$=$\frac{1}{5}×\frac{1}{2}+\frac{2\sqrt{6}}{5}×\frac{\sqrt{3}}{2}$=$\frac{1+6\sqrt{2}}{10}$.
故答案为:$\frac{1+6\sqrt{2}}{10}$.
点评 本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,0) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [kπ,kπ+$\frac{π}{2}$](k∈Z) | B. | [2kπ,2kπ+$\frac{π}{2}$](k∈Z) | C. | [-$\frac{π}{2}$+kπ,kπ](k∈Z) | D. | [-$\frac{π}{2}$+2kπ,2kπ](k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com