精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数fx)满足fx=f2-x),且f1=6f3=2.若不等式fx)>2mx+1[-13]恒成立,则实数m的取值范围是______

【答案】-

【解析】

根据fx=f2-x),且f1=6f3=2.求解fx)的解析式,带入不等式,讨论对称轴与区间端点大小,即可求解实数m的取值范围.

由题意,设fx=ax2+bx+c

fx=f2-x),可得,即b=-2a

f1=6f3=2

可得

解得:c=5a=-1b=2

fx=-x2+2x+5

-x2+2x+52mx+1[-13]恒成立,

hx=x2+2m-2x-40

根据二次函数的性质,可得,即

故答案为:(-).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C和点,若在圆C上存在点P,使得,则半径r的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元二次方程x2-mx+m2+m-1=0有两实根x1x2

1)求m的取值范围;

2)求x1x2的最值;

3)如果,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中文函数function)一词,最早由近代数学家李善兰翻译的之所以这么翻译,他给出的原因是凡此变数中函彼变数者,则此为彼之函数,也即函数指一个量随着另一个量的变化而变化下列选项中两个函数相等的是(    )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ex(x∈R,且e为自然对数的底数).

(1)判断函数f(x)的单调性与奇偶性;

(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线 ,直线与抛物线交于 两点.

(1)若直线 的斜率之积为,证明:直线过定点;

(2)若线段的中点在曲线 上,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某物流公司购买了一块长AM=90米,宽AN=30米的矩形地块AMPN,规划建设占地如图中矩形ABCD的仓库,其余地方为道路和停车场,要求顶点C在地块对角线MN上,BD分别在边AMAN上,假设AB长度为x米.若规划建设的仓库是高度与AB的长相同的长方体建筑,问AB长为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

【答案】I)抛物线C的方程为,其准线方程为II)符合题意的直线l 存在,其方程为2x+y-1 =0.

【解析】

试题()求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-222p·1,所以p2.再由抛物线方程确定其准线方程:,()由题意设,先由直线OA的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定

试题解析:解 (1)将(1,-2)代入y22px,得(-222p·1

所以p2

故所求的抛物线C的方程为

其准线方程为

2)假设存在符合题意的直线

其方程为

因为直线与抛物线C有公共点,

所以Δ48t≥0,解得

另一方面,由直线OA的距离

可得,解得

因为-1[,+),1∈[,+),

所以符合题意的直线存在,其方程为

考点:抛物线方程,直线与抛物线位置关系

【名师点睛】求抛物线的标准方程的方法及流程

1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.

2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.

提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mxx2=mym≠0).

型】解答
束】
22

【题目】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.

(1)求椭圆的方程;

(2)直线过椭圆左焦点交椭圆于为椭圆短轴的上顶点,当直线时,求的面积.

查看答案和解析>>

同步练习册答案