精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

【答案】1)证明见解析;2

【解析】试题分析:1要证平面平面,转证平面,又,即证平面.2建立空间坐标系,由平面与平面所成锐角的大小为,得到,进而得到四棱锥的体积.

试题解析:

解:(1如图①,取的中点 的中点连接,易知

四边形为平行四边形,.

又三棱柱是正三棱柱,

为正三角形.

平面

,

平面.

平面.

平面

所以平面平面

(2)(方法一)建立如图①所示的空间直角坐标系,

,得

.

为平面的一个法向量.

.

显然平面的一个法向量为

所以

.

所以.

(方法二)如图②,延长交于点,连接.

, 的中点,也是的中点,

的中点,.

平面,平面.

为平面与平面所成二面角的平面角.

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱ABC-A1B1C1容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面AA1B1B水平放置,如图所示,DEFG分别在棱CACBC1B1C1A1,水面恰好过点DEFC,CD=2

(1)证明:DEAB;

()若底面ABC水平放置时,求水面的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)aln xbx2图象上点P(1f(1))处的切线方程为2xy30.

(1)求函数f(x)的解析式及单调区间;

(2)若函数g(x)f(x)mln 4上恰有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数

(1)若函数处的切线斜率为2的值

(2)求函数的单调区间

(3)若函数有两个极值点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为是等比数列,.

(1)求数列的通项公式;

(2)求数列的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求函数f(x)= 的定义域

(2)若当x[-1,1]时,求函数f(x)=3x-2的值域.

查看答案和解析>>

同步练习册答案