精英家教网 > 高中数学 > 题目详情
2.已知$\vec a=(3,4)$,$\vec b=(9,x)$,$\vec c=(4,y)$且$\vec a∥\vec b$,$\vec a⊥\vec c$.
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$;
(2)若$\vec m=2\vec a-\vec b$,$\vec n=\vec a+\vec c$,求向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的大小.

分析 (1)由$\vec a∥\vec b$,$\vec a⊥\vec c$.可得36-3x=0,36+xy=0,解出即可得出.
(2)$\overrightarrow{m}$=(-3,-4),$\overrightarrow{n}$=(7,1),利用$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$即可得出.

解答 解:(1)∵$\vec a∥\vec b$,$\vec a⊥\vec c$.
∴36-3x=0,12+4y=0,
解得x=12,y=-3,
∴$\overrightarrow{b}$=(9,12),$\overrightarrow{c}$=(4,-3).
(2)$\overrightarrow{m}$=(-3,-4),$\overrightarrow{n}$=(7,1),
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-25}{5×\sqrt{50}}$=-$\frac{\sqrt{2}}{2}$.
∴向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$.

点评 本题考查了向量数量积运算性质、向量夹角公式、向量共线定理、,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个判断:?
①某校高三(1)班的人数和高三(2)班的人数分别是m和n,某次数学测试平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$;?
②从总体中抽取的样本(1,2.5),(2,3.1),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);
③在频率分布直方图中,众数左边和右边的所有直方图的面积相等.
其中正确的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.命题“若x2=1,则x=1的否命题为:“若x2=1,则x≠1”
B.“m=1”是“直线x-my=0和直线x+my=0互相垂直”的充要条件
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.y=f(x)为R上的偶函数,且满足f(x+4)=f(4-x),当x∈[0,4]时,f(x)=x且sinα=$\frac{\sqrt{2}}{3}$,则f[2016+sin(α-2π)•sin(π+α)-2cos2(-α)]=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知菱形ABCD的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率(  )
A.$\frac{π}{4}$B.1-$\frac{π}{4}$C.$\frac{{\sqrt{3}π}}{24}$D.$1-\frac{{\sqrt{3}π}}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不存在函数f(x)满足,对任意x∈R都有(  )
A.f(|x+1|)=x2+2xB.f(cos2x)=cosxC.f(sinx)=cos2xD.f(cosx)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{2}$x2+2xf′(2017)-2017lnx,则f′(2017)=(  )
A.2016B.-2016C.2017D.-2017

查看答案和解析>>

同步练习册答案