【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.
【答案】解:(1)在四棱锥P﹣ABCD中,
因PA⊥底面ABCD,AB平面ABCD,
故PA⊥AB.
又AB⊥AD,PA∩AD=A,
从而AB⊥平面PAD,
故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小为45°.
(2)证明:在四棱锥P﹣ABCD中,
因为PA⊥底面ABCD,CD平面ABCD,
所以CD⊥PA.
因为CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因为E是PC的中点,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
【解析】(1)先找出PB和平面PAD所成的角,再进行求解即可;
(2)可以利用线面垂直根据二面角的定义作角,再证明线面垂直.
【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 底面,底面是直角梯形, , , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD中,
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.
(2)当BE=BF=BC时,求三棱锥A′﹣EFD体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线: .
(Ⅰ)求曲线的普通方程和的直角坐标方程;
(Ⅱ)若与相交于两点,设点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题:
①函数g(x)=f(x)+f(﹣x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2﹣x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1 , x2∈R,且x1≠x2 , 若>0恒成立,则f(x)为R上的增函数,
其中所有正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组中,f(x)与g(x)表示同一函数的是( )
A.f(x)=x,
B.f(x)=x,
C.f(x)=x2 ,
D.f(x)=|x|,g(x)=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com