【题目】如图,已知动圆过定点且与轴相切,点关于圆心的对称点为,点的轨迹为
(1)求曲线的方程;
(2)一条直线经过点,且交曲线于、两点,点为直线上的动点.
①求证:不可能是钝角;
②是否存在这样的点,使得是正三角形?若存在,求点的坐标;否则,说明理由.
科目:高中数学 来源: 题型:
【题目】已知半圆:,、分别为半圆与轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若在其定义域内为单调递增函数,求实数的取值范围;
(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围;
(3)求证:对任意的正整数,都有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,离心率为,是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题:函数的定义域为;命题:关于的方程有实根.
(1)如果是真命题,求实数的取值范围.
(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,与都为等边三角形,且侧面与底面互相垂直,为的中点,点在线段上,且,为棱上一点.
(1)试确定点的位置,使得平面;
(2)在(1)的条件下,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)如图(1)所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率;
(2)如图(2)所示,双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,求此双曲线的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点分别为和,短轴的两个端点分别为和,点在椭圆上,且满足,当变化时,给出下列三个命题:
①点的轨迹关于轴对称;②的最小值为2;
③存在使得椭圆上满足条件的点仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com