精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为轴上的点.

(1)过点作直线相切,求切线的方程;

(2)如果存在过点的直线与抛物线交于两点,且直线的倾斜角互补,求实数的取值范围.

【答案】(1) 切线的方程为;(2) .

【解析】试题分析:(1)设切点为,利用导数求出切线斜率,由点斜式求得切线方程,将代入切线方程,求出,进而可得切线方程;(2)设直线的方程为,代入,根据斜率公式可得,韦达定理得,利用判别式大于零可得结果.

试题解析:(1)设切点为,则.

点处的切线方程为.

过点,∴,解得.

时,切线的方程为

时,切线的方程为.

(2)设直线的方程为,代入.

,则.

由已知得

,∴.

代入,③

显然成立

时,方程③有解,∴解得.

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)的定义域为R,当x0时满足:①fx)﹣2f(﹣x)=0;②对任意x10x20x1x2有(x1x2)(fx1)﹣fx2))>0恒成立:③f4)=2f2)=2,则不等式x[fx)﹣1]0的解集为_____(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图象经过P34)点,求a的值;

2)比较大小,并写出比较过程;

3)若,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的三个内角ABC所对的边分别是abc,向量(cos Bcos C)(2acb),且

(1)求角B的大小;

(2)b,求ac的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AUAU是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据:

行星编号(x

1(金星)

2(地球)

3(火星)

4

5(木星)

6(土星)

离太阳的距离(y

0.7

1.0

1.6

5.2

10.0

受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星.

1)为了描述行星离太阳的距离y与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);

;②;③.

2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;

3)请用你求得的模型,计算谷神星离太阳的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,曲线总在曲线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为数列的前项和,已知

(1)求

(2)记数列的前项和为,若对于任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案