精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.

【答案】
(1)

解:(1)∵y2=2px过点P(1,1),

∴1=2p,

解得p=

∴y2=x,

∴焦点坐标为( ,0),准线为x=﹣


(2)

(2)证明:设过点(0, )的直线方程为

y=kx+ ,M(x1,y1),N(x2,y2),

∴直线OP为y=x,直线ON为:y= x,

由题意知A(x1,x1),B(x1 ),

,可得k2x2+(k﹣1)x+ =0,

∴x1+x2= ,x1x2=

∴y1+ =kx1+ + =2kx1+ =2kx1+ =

∴A为线段BM的中点.


【解析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;
(2.)设过点(0, )的直线方程为y=kx+ ,M(x1 , y1),N(x2 , y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0 , g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0 , 2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0 , 2],满足| ﹣x0|≥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,B为△ACD所在平面外一点,MNG分别为△ABC,△ABD,△BCD的重心.

(1)求证:平面MNG∥平面ACD

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD中,下面结论错误的是( )

A. BD∥平面C B. AC1⊥BD

C. AC1⊥平面C D. 向量的夹角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB.

(2)试问:当点E在线段AB上移动时,二面角PFCB的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC-A1B1C1的底面ABC中,CA=CB=1,ACB=90°,棱AA1=2,如图,以C为原点,分别以CA,CB,CC1x,y,z轴建立空间直角坐标系.

(1)求平面A1B1C的法向量;

(2)求直线AC与平面A1B1C夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于概率和统计的几种说法:

10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则abc的大小关系为cab

②样本4,2,1,0,-2的标准差是2;

③在面积为S的△ABC内任选一点P,则随机事件“△PBC的面积小于”的概率为

④从写有0,1,2,,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.

其中正确说法的序号有________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为异面直线,且所成的角为70°,过空间一点作直线l,直线l与a,b均异面,且所成的角均为50°,则满足条件的直线共有( ) 条

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4 , 坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为 (t为参数).(10分)
(1)若a=﹣1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为 ,求a.

查看答案和解析>>

同步练习册答案