精英家教网 > 高中数学 > 题目详情

如图,某地质队自水平地面ABC三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在BC处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1-A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S

(Ⅰ)证明:中截面DEFG是梯形;

(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V=S·h来估算.已知V=(d1+d2+d3)S,试判断VV的大小关系,并加以证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖北)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1-A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S
(Ⅰ)证明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V=S-h来估算.已知V=
13
(d1+d2+d3)S,试判断V与V的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2013年湖北省高考数学试卷(文科)(解析版) 题型:解答题

如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1-A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S
(Ⅰ)证明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V=S-h来估算.已知V=(d1+d2+d3)S,试判断V与V的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某地质队自水平地面ABC三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在BC处正下方的矿层厚度分别为,且. 过的中点且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为

(Ⅰ)证明:中截面是梯形;

(Ⅱ)在△ABC中,记BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断V的大小关系,并加以证明.

 


查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某地质队自水平地面ABC三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在BC处正下方的矿层厚度分别为,且. 过的中点且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为

(Ⅰ)证明:中截面是梯形;

(Ⅱ)在△ABC中,记BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断V的大小关系,并加以证明.

 


查看答案和解析>>

同步练习册答案