精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sin2
π+2x
4
,cosx+sinx)
b
=(4sinx,cosx-sinx)
f(x)=
a
b

(1)求f(x)的解析式;
(2)求f(x)的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积.
分析:(1)利用三角函数的恒等变换以及两个向量数量积公式化简f(x)的解析式为2sinx+1.
 (2)f(x)的图象与x轴的正半轴的第一个交点为(
6
,0)
,可得f(x)的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积S=
6
0
(2sinx+1)dx
,运算求得结果.
解答:解:(1)f(x)=sin2
π+2x
4
•4sinx+(cosx+sinx)(cosx-sinx)
----(2分)
=4sinx•
1-cos(
π
2
+x)
2
+cos2x=2sinx(1+sinx)+1-2sin2x=2sinx+1
 
∴f(x)=2sinx+1.------(7分)
(2)令f(x)=2sinx+1=0,可得sinx=-
1
2
,∴x=2kπ-
π
6
,k∈z.
f(x)的图象与x轴的正半轴的第一个交点为(
6
,0)
------(9分)
∴f(x)的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积
S=
6
0
(2sinx+1)dx
=(-2cosx+x)
/
6
0
=(-2cos
6
+
6
)-(-2cos0+0)
=2+
3
+
6
------(13分)
点评:本题主要考查三角函数的恒等变换以及两个向量数量积公式的应用,利用定积分求图形的面积,化简f(x)的解析式为2sinx+1,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案