精英家教网 > 高中数学 > 题目详情
已知正△ABC的顶点A在平面α内,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α内的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的最小值为______.
如图所示,不妨设AB=2.则AD=
3

假设一开始正△ABC在平面α内时的位置,则∠BAC=60°.
而当BCα时,其B、D、C三点的射影分别为B1,D1,C1时,且∠B1AC1=90°.
∠DAD1为直线AD与平面α所成角且最小.
AD1=
1
2
B1C1=
1
2
BC=1
,∴DD1=
AD2-A
D21
=
2

此时sin∠DAD1=
DD1
AD
=
2
3
=
6
3

当BC与平面α部平行时,可以看出:其DD1长度必然增大.
因此直线AD与平面α所成角的正弦值的最小值为
6
3

故答案为
6
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

点E是正四面体ABCD的棱AD的中点,则异面直线BE与AC所成的角的余弦值为(  )
A.
3
6
B.
3
3
C.
6
3
D.
5
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方形ABCD沿对角线BD折成一个120°的二面角,点C到达点C1,这时异面直线AD与BC1所成的角的余弦值是(  )
A.
2
2
B.
1
2
C.
3
4
D.
3
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中,BB1=BC,P为C1D1上一点,则异面直线PB与B1C所成角的大小(  )
A.是45°B.是60°
C.是90°D.随P点的移动而变化

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知在正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,E为C1C上的点,且CE=1,
(1)求证:A1C⊥平面BDE;
(2)求A1B与平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中直线A1D与平面AB1C1D所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
AA1=A1C=
6

(Ⅰ)设AC的中点为D,证明A1D⊥底面ABC;
(Ⅱ)求异面直线A1C与AB成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1的棱长为2,M,N分别为AA1、BB1的中点.
求:(1)CM与D1N所成角的余弦值.
(2)D1N与平面MBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,若PA=AB,则PC与面PAB所成角的余弦值为______.

查看答案和解析>>

同步练习册答案