精英家教网 > 高中数学 > 题目详情

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

(1)对于面面垂直的证明,主要是通过判定定理来分析得到,注意到平面是解题的关键。
(2)

解析试题分析:解:(Ⅰ) 由题知:       
        
    又 平面
平面  平面平面       6分
(Ⅱ) 如图建立空间直角坐标系



 平面
 平面的一个法向量为  8分
    
设平面的一个法向量为
     
      
 平面与平面的夹角为   12分
考点:空间中的面面位置关系
点评:对于空间中的垂直的证明主要是熟练的运用判定定理和性质定理来证明,同时二面角的求解,一般采用向量法来得到,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在正方体中,是棱的中点.

(Ⅰ)证明:平面
(Ⅱ)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
点.

(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面AEB,,,G是BC的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥平面的中点, 的中点,底面是菱形,对角线交于点

求证:(1)平面平面
(2)平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

同步练习册答案