精英家教网 > 高中数学 > 题目详情
6.定义:若函数f(x)与g(x)有共同的解析式和值域,则称f(x)与g(x)是“相似函数”,若f(x)=x2+1,x∈{±1,±2},则与f(x)相似的函数有9个.

分析 由新定义写出函数f(x)=x2+1,x∈{±1,±2}所有“相似函数”得答案.

解答 解:由题目中给出的“相似函数”的定义,
可得与f(x)=x2+1,x∈{±1,±2}是相似函数的函数有:
f(x)=x2+1,x∈{-1,-2};
f(x)=x2+1,x∈{-1,2};
f(x)=x2+1,x∈{1,-2};
f(x)=x2+1,x∈{1,2};
f(x)=x2+1,x∈{-1,±2};
f(x)=x2+1,x∈{1,±2};
f(x)=x2+1,x∈{±1,-2};
f(x)=x2+1,x∈{±1,2}.
f(x)=x2+1,x∈{±1,±2}共9个.
故答案为:9.

点评 本题是新定义题,考查了函数的概念,关键是做到不重不漏,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知A={x|x-1>0},B={-2,-1,0,1,2},则A∩B=(  )
A.{-2,-1}B.{2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知7个人排成一排照相,其中某人一定要站在中间,则不同的排法总数是(  )
A.5040B.720C.288D.144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果关于x的不等式(a-2)x2+2(a-2)x-4<0对一切实数x恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,-2)C.(-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,满足Sn=2(an-n),n∈N+*
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)的定义域为R,并满足以下条件:
①对任意的x∈R,有f(x)>0;
②对任意的x,y∈R,都有f(xy)=[f(x)]y
③$f(\frac{1}{3})>1$.
(Ⅰ)求f(0)的值;
(Ⅱ)判断并证明函数f(x)在R上的单调性;
(Ⅲ)解关于x的不等式:[f(x-1)](x+1)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={a,b},B={-1,0,1},则从集合A到集合B的映射有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在某次商品促销活动中,某人可得到4件不同的奖品,这些奖品要从40件不同的奖品中随机抽取决定,用系统抽样的方法确定这个人所得到的4件奖品的编号,有可能的是(  )
A.3,9,15,11B.3,12,21,40C.8,20,32,40D.2,12,22,32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设m,n,l为空间不重合的直线,α,β,γ是空间不重合的平面,则下列说法正确的个数是1
①m∥l,n∥l,则m∥n;
②m⊥l,n⊥l,则m∥n;
③若m∥l,m∥α,则l∥α;
④若l∥m,l?α,m?β,则α∥β;
⑤若m?α,m∥β,l?β,l∥α,则α∥β

查看答案和解析>>

同步练习册答案