精英家教网 > 高中数学 > 题目详情
17.有四个实数,前3个数成等比数列,且它们的积为216,后三个数成等差数列,且它们的和为12,求这四个数.

分析 设此前3个数分别为:$\frac{a}{q}$,a,aq,可得$\frac{a}{q}$•a•aq=216,解得a.设后三个数分别为:b-d,b,b+d.可得b-d+b+b+d=12,解得b.于是4-d=6,4=6q,解得d,q.即可得出.

解答 解:设此前3个数分别为:$\frac{a}{q}$,a,aq,
∵$\frac{a}{q}$•a•aq=216,∴a3=216,解得a=6.
设后三个数分别为:b-d,b,b+d.
∵b-d+b+b+d=12,解得b=4.
∴4-d=6,4=6q,
解得d=-2,q=$\frac{2}{3}$.
∴这四个数分别为:9,6,4,2.

点评 本题考查了等比数列与等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.对于非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)=0.则|$\overrightarrow{b}$|的取值范围是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆的中心在坐标原点,长轴端点为A,B,右焦点为F,且$\overrightarrow{AF}$•$\overrightarrow{BF}$=1,|$\overrightarrow{OF}$|=1.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且|$\overrightarrow{MP}$|2+|$\overrightarrow{NQ}$|2=|$\overrightarrow{NP}$|2+|$\overrightarrow{MQ}$|2
①证明:l1⊥l2; ②求四边形MPNQ的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=$\frac{π}{3}$,OA⊥底面ABCD,OA=2,M为OA的中点.求点B到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,若曲线$y={a^2}{x^2}-\frac{b^2}{x}$(a,b为常数) 过点P(1,y0),且该曲线在点P处的切线与直线2x-y+3=0平行,则$\frac{{8{b^2}+{a^2}}}{{{a^2}{b^2}}}$取得最小值时y0值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆C2:x2+y2=a2的切线,设切点为M,延长FM交双曲线C1于点N,若点M为线段FN的中点,则双曲线C1的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若F是抛物线y2=4x的焦点,点Pi(i=1,2,3,…,10)在抛物线上,且$\overrightarrow{{P_1}F}+\overrightarrow{{P_2}F}+…+\overrightarrow{{P_{100}}F}=\overrightarrow 0$,则$|\overrightarrow{{P_1}F|}+\overrightarrow{|{P_2}F}|+…+\overrightarrow{|{P_{100}}F}|$=200.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$α=\frac{7π}{6}$,则计算1+sin(α-2π)•sin(π+α)-2cos2(-α)所得的结果为$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+3|-|x-1|-x,$g(x)=x+\frac{8}{x}$.
(1)求解不等式:f(x)>0;
(2)当x>0时,f(x)+m<g(x),且当x<0时,f(x)+m>g(x)恒成立,求m的范围.

查看答案和解析>>

同步练习册答案