A. | 4$\sqrt{2}$ | B. | 3+$\sqrt{5}$ | C. | $\sqrt{2}$+1 | D. | 3+2$\sqrt{2}$ |
分析 设P点的横坐标为x,根据|PF1|=e|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.
解答 解:设P点的横坐标为x,准线方程为x=±$\frac{{a}^{2}}{c}$,
∵|PF1|=e|PF2|,P在双曲线右支(x≥a),
根据双曲线的第二定义,可得e2(x-$\frac{{a}^{2}}{c}$)=e(x+$\frac{{a}^{2}}{c}$),
∴(e-1)x=a+$\frac{{a}^{2}}{c}$
∵x≥a,∴(e-1)x≥(e-1)a
∴a+$\frac{{a}^{2}}{c}$≥(e-1)a,e2-2e-1≤0,
∵e>1,∴1<e≤$\sqrt{2}$+1,
则双曲线的离心率的最大值为$\sqrt{2}$+1.
故选:C.
点评 本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16cm | B. | 12$\sqrt{3}$cm | C. | 24$\sqrt{3}$cm | D. | 26cm |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1-3i}{2}$ | B. | $\frac{1+3i}{2}$ | C. | $\frac{-1-3i}{2}$ | D. | $\frac{-1+3i}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {dn}是等差数列 | B. | {dn2}是等差数列 | C. | {Sn}是等差数列 | D. | {Sn2}是等差数列 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com