精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,DE分别为BCPD的中点,FAB上一点,且.

1)求证:平面PAD

2)求证:平面PAC

3)若二面角60°,求三棱锥的体积.

【答案】1)见解析(2)见解析(3

【解析】

1)根据一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直,即证得;(2)根据平面外一条直线和此平面内的一条直线平行,那么这条直线和这个平面平行,在平面PAC中找一条直线与EF平行,即得证;(3)由二面角60°,可知的面积,再由三棱锥的体积公式即得。

解:(1)证明:因为DBC的中点,

所以

所以,平面PAD.

2)证明:在AC上取一点G,使得

PC的中点H连接FGGHHE

中,有,则

中,EH分别是PDPC的中点,

所以,,所以,四边形EFGH为平行四边形,

所以,,又平面PAC平面PAC

所以,平面PAC.

3)由(1)知

所以为二面角的平面角,即

中,,所以

中,,所以

所以,

所以,三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在坐标平面上,纵横坐标都是整数的点称为整点.试证:存在一个同心圆的集合,使得:(1)每个整点都在此集体的某一圆周上;(2)此集合的每个圆周上.有且只有一个整点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,某种商品在销售中有如下关系:第x)天的销售价格(单位:元/件)为,第x天的销售量(单位:件)为为常数),且在第20天该商品的销售收入为600元(销售收入=销售价格×销售量).

1)求a的值,并求第15天该商品的销售收入;

2)求在这30天中,该商品日销售收入y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是正方形,O是正方形的中心,PO底面ABCD,底面边长为aEPC的中点.

(1)求证:平面PAC平面BDE

(2)若二面角EBDC30°,求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】暑假期间,某旅行社为吸引游客去某风景区旅游,推出如下收费标准:若旅行团人数不超过30,则每位游客需交费用600元;若旅行团人数超过30,则游客每多1人,每人交费额减少10元,直到达到70人为止.

(1)写出旅行团每人需交费用(单位:元)与旅行团人数之间的函数关系式;

(2)旅行团人数为多少时,旅行社可以从该旅行团获得最大收入?最大收入是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是(  )

A. x>(y B. ln(x2+1)>ln(y2+1)

C. D. tanx>tany

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.

1)写出年利润W(万元)关于年产量x(千件)的函数解析式;

2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对一块边长8米的正方形场地ABCD进行改造,点E为线段BC的中点,点F在线段CDAD上(异于AC),设(米),的面积记为(平方米),其余部分面积记为(平方米).

1)当(米)时,求的值;

2)求函数的最大值;

3)该场地中部分改造费用为(万元),其余部分改造费用为(万元),记总的改造费用为W(万元),求W取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

同步练习册答案