精英家教网 > 高中数学 > 题目详情
已知:y=f(x)定义域为[-1,1],且满足:f(-1)=f(1)=0,对任意u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|,
(1)判断函数p(x)=x2-1是否满足题设条件?
(2)判断函数g(x)=,是否满足题设条件?
解:(1)若u,v∈[-1,1],|p(u)-p(v)|=|u2-v2|=|(u+v)(u-v)|,
取u=∈[-1,1],v=∈[-1,1],
则|p(u)-p(v)|=|(u+v)(u-v)|=|u-v|>|u-v|,
所以p(x)不满足题设条件。
(2)分三种情况讨论:
10.若u,v∈[-1,0],则|g(u)-g(v)|=|(1+u)-(1+v)|=|u-v|,满足题设条件;
20.若u,v∈[0,1],则|g(u)-g(v)|=|(1-u)-(1-v)|=|v-u|,满足题设条件;
30.若u∈[-1,0],v∈[0,1],
则:|g(u)-g(v)|=|(1-u)-(1+v)|=|-u-v|=|v+u|≤|v-u|=|u-v|,满足题设条件;
40.若u∈[0,1],v∈[-1,0],同理可证满足题设条件;
综合上述得g(x)满足条件。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)到定点F(1,0)的距离比它到定直线x=-2的距离小1.
(1)求点P的轨迹C的方程;
(2)在轨迹C上是否存在两点M、N,使这两点关于直线l:y=kx+3对称,若存在,试求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)设M(a,ka),N(b,-kb),(a>0,b>0),求P(x,y)(x>0,0<y<kx)分别到直线OM,ON的距离.
(2)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(3)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a•2x
2x+
2
的图象过点(0,
2
-1)

(1)求f(x)的解析式;
(2)设P1(x1,y1),P2(x2,y2)为y=f(x)的图象上两个不同点,又点P(xP,yP)满足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O为坐标原点.试问:当xP=
1
2
时,yP是否为定值?若是,求出yP的值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案