3£®ÒÑ֪бÂÊΪkµÄÖ±Ïßl¹ýµãM£¨1£¬0£©£¬ÇÒÓëÅ×ÎïÏßx2=2y½»ÓÚA£¬BÁ½µã£¬Èô¶¯µãPÔÚyÖáµÄÓÒ²àÇÒÂú×ã$\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$£©£¨OΪ×ø±êÔ­µã£©£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£»
£¨2£©¼Ç¶¯µãPµÄ¹ì¼£ÎªC£¬ÈôÇúÏßCµÄÇÐÏßбÂÊΪ¦Ë£¬Âú×ã$\overrightarrow{MB}=¦Ë\overrightarrow{MA}$£¬µãAµ½yÖáµÄ¾àÀëΪa£¬ÇóaµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©µãбʽÉè³öÖ±ÏßlµÄ·½³Ì²¢ÓëÅ×ÎïÏß·½³ÌÁªÁ¢·½³Ì×飬µÃµ½Ö±ÏßlÓëÎïÏß½»ÓÚA£¬BÁ½µãµÄ×ø±ê¼äµÄ¹Øϵ£¬ÓÉ$\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$£¬µÃµ½µãPµÄ×ø±êÓëÖ±ÏßбÂÊkµÄ¹Øϵ£¬ÏûÈ¥kµÃµ½¶¯µãPµÄ¹ì¼£·½³Ì£®
£¨2£©ÏÈÇó³öÇúÏßCµÄÇÐÏßбÂʦ˵ķ¶Î§£¬ÓÖ$\overrightarrow{MB}=¦Ë\overrightarrow{MA}$£¬Óæ˱íʾa£¬ÓÉбÂʦ˵ķ¶Î§µÃ³öaµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬½»µãΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÓÉ$\left\{\begin{array}{l}{x^2}=2y\\ y=k£¨x-1£©\end{array}\right.$£¬µÃx2-2kx+2k=0£¬¡­£¨1·Ö£©
ÒòΪֱÏßÓëÅ×ÎïÏßÓÐÁ½¸ö½»µã£¬ËùÒÔ¡÷=4k2-8k£¾0£¬¼´k£¾2»òk£¼0..¡­£¨2·Ö£©
Ôò$\left\{\begin{array}{l}{x_1}+{x_2}=2k\\{x_1}{x_2}=2k\end{array}\right.$£®¡­£¨3·Ö£©
ÓÉ$\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$£¬µÃPÊÇABµÄÖе㣬ÉèP£¨x£¬y£©£¬
Ôò$\left\{\begin{array}{l}x=\frac{{{x_1}+{x_2}}}{2}=k\\ y=k£¨x-1£©={k^2}-k\end{array}\right.$£¬ÏûÈ¥kµÃy=x2-x£¬¡­£¨4·Ö£©
ÓÉPµãÔÚyÖáµÄÓҲ࣬µÃx£¾0£¬ÔÙÓÉx=k£¬¼°k£¾2»òk£¼0£¬µÃx£¾2£®¡­£¨5·Ö£©
¹Ê¶¯µãPµÄ¹ì¼£·½³ÌΪy=x2-x£¨x£¾2£©£®¡­£¨6·Ö£©
£¨2£©ÓÉÇúÏßCµÄ·½³ÌΪy=x2-x£¨x£¾2£©£¬ÇúÏßCµÄÇÐÏßµÄбÂÊΪ¦Ë=y'=2x-1£¨x£¾2£©£¬¡à¦Ë£¾3£®¡­£¨7·Ö£©
ÓÉÒÑÖªµÃ£º$\left\{\begin{array}{l}\overrightarrow{MB}=£¨{x_2}-1£¬{y_2}£©\\ \overrightarrow{MA}=£¨{x_1}-1£¬{y_1}£©\end{array}\right.$
ÓÉ$\overrightarrow{MB}=¦Ë\overrightarrow{MA}$µÃ$\left\{\begin{array}{l}{x_2}-1=¦Ë£¨{x_1}-1£©\\{y_2}=¦Ë{y_1}\end{array}\right.$£¬ÓÉ${x_1}^2=2{y_1}$£¬${x_2}^2=2{y_2}$µÃ$\left\{\begin{array}{l}{x_2}=¦Ë{x_1}-¦Ë+1\\{x_2}^2=¦Ë{x_1}^2\end{array}\right.$
Ó֦ˣ¾3½âµÃ$¦Ë{x_1}^2-2¦Ë{x_1}+¦Ë-1=0$£¬¡­£¨9·Ö£©
½âµÃ${x_1}=\frac{{2¦Ë¡À\sqrt{4¦Ë}}}{2¦Ë}=1¡À\sqrt{\frac{1}{¦Ë}}$£®
ÔòAµ½yÖáµÄ¾àÀëΪ$a={x_1}=1¡À\sqrt{\frac{1}{¦Ë}}£¨¦Ë£¾3£©$£¬
¹ÊaµÄÈ¡Öµ·¶Î§ÊÇ$£¨1-\frac{{\sqrt{3}}}{3}£¬1£©¡È£¨1£¬1+\frac{{\sqrt{3}}}{3}£©$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³Ì¡¢¹ì¼£·½³ÌµÄÇ󷨣¬ÒÔ¼°ÏòÁ¿ÔËË㣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª¼¯ºÏ$P=\left\{{x|{1-\frac{x-1}{3}}|¡Ü2}\right\}\;£¬\;\;Q=\left\{{x|{x^2}-2x+£¨{1-{m^2}}£©¡Ü0}\right\}$£¬ÆäÖÐm£¾0£¬È«¼¯U=R£®Èô¡°x¡Ê∁UP¡±ÊÇ¡°x¡Ê∁UQ¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§Îª[9£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ö±Ïßy=2x-3ÔÚyÖáÉϵĽؾàÊÇ£¨¡¡¡¡£©
A£®3B£®2C£®-2D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{4}$+y2=1µÄ×󶥵ãΪA£¬ÓÒ¶¥µãΪB£¬µãPÊÇÍÖÔ²CÉÏλÓÚxÖáÉÏ·½µÄ¶¯µã£¬Ö±ÏßAP£¬BPÓëÖ±Ïßy=3·Ö±ð½»ÓÚG£¬HÁ½µã£¬ÔòÏ߶ÎGHµÄ³¤¶ÈµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¶ÌÖá¶ËµãÓëÍÖÔ²µÄÁ½¸ö½¹µãËù¹¹³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£¬¹ýµãD£¨0£¬2£©ÇÒбÂÊΪkµÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¶¨µã$E£¨0£¬\frac{11}{4}£©$£¬Ê¹$\overrightarrow{AE}$•$\overrightarrow{BE}$ºãΪ¶¨Öµ£®Èô´æÔÚÇó³öÕâ¸ö¶¨Öµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Ö±Ïß$l£ºx-\sqrt{3}y+1=0$µÄбÂÊΪ$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÓÒ¶¥µãΪE£¬¹ýF1ÓÚxÖá´¹Ö±µÄÖ±ÏßÓëÍÖÔ²CÏཻ£¬ÆäÖÐÒ»¸ö½»µãΪM£¨-$\sqrt{3}$£¬$\frac{1}{2}$£©£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨II£©¾­¹ýµãP£¨1£¬0£©µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£®
£¨i£©ÈôÖ±ÏßAE£¬BEµÄбÂÊΪk1£¬k2£¨k1¡Ù0£¬k2¡Ù0£©£¬Ö¤Ã÷£ºk1•k2Ϊ¶¨Öµ£»
£¨ii£©ÈôOΪ×ø±êÔ­µã£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èôx£¾0£¬Ôòº¯Êýf£¨x£©=$\frac{2}{x}$+xµÄ×îСֵΪ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨Àí¿Æ£©Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1£¬OÊÇACµÄÖе㣬EÊÇÏ߶ÎD1OÉÏÒ»µã£¬ÇÒ$\frac{{D}_{1}E}{EO}$=¦Ë£®
£¨1£©Èô¦Ë=$\frac{5}{6}$£¬ÇóÒìÃæÖ±ÏßDEÓëCD1Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨2£©Èô¶þÃæ½ÇD1-CE-DΪ$\frac{2}{3}$¦Ð£¬Çó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸