精英家教网 > 高中数学 > 题目详情
18.已知在△ABC中,内角A,B,C的对边分别是a,b,c,S是该三角形的面积,若向量$\overrightarrow m=({2sinB,cos2B}),\overrightarrow n=({2{{cos}^2}({\frac{π}{4}+\frac{B}{2}}),-1})$,且$\overrightarrow m•\overrightarrow n=\sqrt{3}$-1.
(1)求角B的大小;
(2)若B为锐角,a=6,S=6$\sqrt{3}$,求b的值.

分析 (1)运用向量的数量积的坐标表示,由二倍角公式,以及特殊角的三角函数值,可得角B;
(2)运用三角形的面积公式,可得c,再由余弦定理,可得b.

解答 解:(1)向量$\overrightarrow m=({2sinB,cos2B}),\overrightarrow n=({2{{cos}^2}({\frac{π}{4}+\frac{B}{2}}),-1})$,
且$\overrightarrow m•\overrightarrow n=\sqrt{3}$-1,
即为2sinB•2cos2($\frac{π}{4}$+$\frac{B}{2}$)-cos2B=$\sqrt{3}$-1,
即有2sinB(1+cos($\frac{π}{2}$+B))-cos2B=$\sqrt{3}$-1,
即2sinB-2sin2B-(1-2sin2B)=$\sqrt{3}$-1,
即有sinB=$\frac{\sqrt{3}}{2}$,
解得B=$\frac{π}{3}$或$\frac{2π}{3}$;
(2)B为锐角,即有B=$\frac{π}{3}$,
a=6,S=6$\sqrt{3}$,即有S=$\frac{1}{2}$acsinB=$\frac{1}{2}$•6c•$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$,
解得c=4,
由余弦定理b2=a2+c2-2accos$\frac{π}{3}$
=36+16-2×6×4×$\frac{1}{2}$=28,
解得b=2$\sqrt{7}$.

点评 本题考查向量的数量积的坐标表示,考查余弦定理和面积公式的运用,以及二倍角公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.数列{an}中,an>0,若S12,S22,…,Sn2,…是一个以1为首项,2为公差的等差数列,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式:
(1)5x+2>2;
(2)33-x<6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在R上的函数f(x),对于任意实数x,y都满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.试判断函数的奇偶性与单调性,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,已知a1=25,S9=S17,问数列前多少项和最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)=lg$\frac{1+{2}^{x}+{3}^{x}•a}{3}$(a∈R),如果当x∈(-∞,1)时f(x)有意义,则a的取值范围是[-1,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c>0,求证:$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-2x-15≤0},B={x|m-2<x<2m-3},且B⊆(A∩B),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x+3,x≤0\\|{2-lnx}|,x>0\end{array}$,直线y=m与函数f(x)的图象相交于四个不同的点,从小到大,交点横坐标依次标记为a,b,c,d,下列说法错误的是(  )
A.m∈[3,4)
B.若关于x的方程f(x)+x=m恰有三个不同的实根,则m取值唯一
C.$a+b+c+d∈[{{e^5}+\frac{1}{e}-2,{e^6}+\frac{1}{e^2}-2}]$
D.abcd∈[0,e4

查看答案和解析>>

同步练习册答案