精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.

(1)用表示甲同学连续三次答题中答对的次数,求随机变量的分布列和数学期望;

(2)设为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件发生的概率.

【答案】(1)分布列见解析,;(2).

【解析】

1)先由题意,得到服从二项分布,以及的所有可能的取值,求出对应的概率,即可得出分布列与数学期望;

(2)先设为乙连续3次答题中答对的次数,由题意得到服从二项分布,根据二项分布的概率计算公式,即可求出结果.

(1)由题意知

的所有可能的取值为0,1,2,3,

所以的分布列为

0

1

2

3

数学期望.

(或.)

(2)设为乙连续3次答题中答对的次数,

由题意知

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数:

(I)时,求的最小值;

(II)对于任意的都存在唯一的使得,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右焦点分别为,离心率为,点在椭圆C上,且F1MF2的面积为.

(1)求椭圆C的标准方程;

(2)已知直线l与椭圆C交于AB两点,,若直线l始终与圆相切,求半径r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在极坐标系下,已知圆O和直线

1求圆O和直线l的直角坐标方程;

2时,求直线l与圆O公共点的一个极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某地区2009年至2018年芯片产业投资额 (单位:亿元)的散点图,为了预测该地区2019年的芯片产业投资额,建立了与时间变量的四个线性回归模型.根据2009年至2018年的数据建立模型①;根据2010年至2017年的数据建立模型②;根据2011年至2016年的数据建立模型③;根据2014年至2018年的数据建立模型④.则预测值更可靠的模型是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭为了解冬季用电量(度)与气温之间的关系,随机统计了某5天的用电量与当天气温,并制作了对照表,经过统计分析,发现气温在一定范围内时,用电量与气温具有线性相关关系:

0

1

2

3

4

(度)

15

12

11

9

8

1)求出用电量关于气温的线性回归方程;

2)在这5天中随机抽取两天,求至少有一天用电量低于10(度)的概率.

(附:回归直线方程的斜率和截距的最小二乘法估计公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定一个弹珠(设为质点,半径忽略不计)的运行轨迹是以小球(半径)的中心为右焦点的椭圆,已知椭圆的右端点到小球表面最近的距离是1,椭圆的左端点到小球表面最近的距离是5.

.

1)求如图给定的坐标系下椭圆的标准方程;

2)弹珠由点开始绕椭圆轨道逆时针运行,第一次与轨道中心的距离是时,弹珠由于外力作用发生变轨,变轨后的轨道是一条直线,称该直线的斜率为“变轨系数”,求的取值范围,使弹珠和小球不会发生碰撞.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖北省第二届(荆州)园林博览会于2019928日至1128日在荆州园博园举办,本届园林博览会以“辉煌荆楚,生态园博”为主题,展示荆州生态之美,文化之韵,吸引更多优秀企业来荆投资,从而促进荆州经济快速发展.在此次博览会期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放荆州市场.已知该种设备年固定研发成本为50万元,每生产一台需另投入80元,设该公司一年内生产该设备万台且全部售完,每万台的销售收入(万元)与年产量(万台)满足如下关系式:.

(1)写出年利润(万元)关于年产量(万台)的函数解析式;(利润=销售收入-成本)

(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,点MN分别在AB1BC1上,且AM=AB1BN=BC1,则下列结论:①AA1⊥MN②A1C1// MN③MN//平面A1B1C1D1④B1D1⊥MN,其中,

正确命题的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案