精英家教网 > 高中数学 > 题目详情
到两坐标轴的距离之和等于2的点的轨迹方程是                        (   )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆为 圆心、为半径。
(I) 写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为,且离心率等于,过点的直线与椭圆相交于不同两点,点在线段上。

(1)求椭圆的标准方程;
(2)设,若直线轴不重合,
试求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其左、右焦点分别为,且成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为,求证:
(3)若为椭圆上的任意一点,是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正六边形ABCDEF的两个顶点A、D为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率是                                  ()
A.                   B.
C.                   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过定点,圆心在抛物线上运动,为圆轴上所截得的弦.
⑴当点运动时,是否有变化?并证明你的结论;
⑵当的等差中项时,
试判断抛物线的准线与圆的位置关系,
并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下四个关于圆锥曲线的命题中:
①设AB为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦ABO为坐标原点,若,则动点P的轨迹为椭圆;
③抛物线的焦点坐标是
④曲线与曲线)有相同的焦点.
其中真命题的序号为____________写出所有真命题的序号.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线恒经过两定点,且以圆的任一条切线除外)为准线,则该抛物线的焦点F的轨迹方程为:              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A(3,2),B(-2,7),若直线y=kx-3与线段AB相交,则k的取值范围为_____________

查看答案和解析>>

同步练习册答案