精英家教网 > 高中数学 > 题目详情

如图所示,在长方体ABCDABCD′中,截下一个棱锥CADD′,求棱锥CADD′的体积与剩余部分的体积之比.

[分析] 剩余部分的几何体不是规则几何体,可利用长方体和棱锥的体积之差来求得剩余部分的体积.

[解析] 已知长方体可以看成直四棱柱ADDA′-BCCB′.

设它的底面ADDA′的面积为S,高为h

则棱锥CADD′的底面积为S,高是h

故棱锥CADD′的体积为VCADD×ShSh.

余下的体积是ShShSh.

所以棱锥CADD′的体积与剩余部分的体积之比为1:5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当M为中点时,求证:B1M⊥平面MAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BCAD′的两个平行平面将长方体分为体积相等的三个部分,那么FD′等于(  )

A.8        B.6    

C.4        D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BC和A′D′的两个平行平面将长方体分为体积相等的三个部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BC和A′D′的两个平行平面将长方体分为体积相等的三个部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

同步练习册答案