精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点 为极点, 轴的非负半轴为极轴建立极坐标系.已知点 的极坐标为 ,曲线 的参数方程为 为参数).
(1)直线 且与曲线 相切,求直线 的极坐标方程;
(2)点 与点 关于 轴对称,求曲线 上的点到点 的距离的取值范围.

【答案】
(1)解:由题意得点 的直角坐标为 ,曲线 的一般方程为

设直线 的方程为 ,即

∵直线 且与曲线 相切,∴

,解得

∴直线 的极坐标方程为


(2)解:∵点 与点 关于 轴对称,∴点 的直角坐标为

则点 到圆心 的距离为

曲线 上的点到点 的距离的最小值为 ,最大值为

曲线 上的点到点 的距离的取值范围为


【解析】(1)根据题意利用点斜式设出直线l的方程与圆的方程联立消去y得到关于x的方程,令判别式等于零求出k的值得出直角坐标方程再转化为极坐标方程即可。(2)由已知求出N到圆心的距离即可得出最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|PA|2,其中A(0,1),B(0,-1),则d的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的单调区间;
(2)当k=2时,求证:对于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得当x∈(﹣1,x0)时,恒有f(x)>g(x)成立,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面三个类比结论:①向量 ,有 ;类比复数 ,有
②实数 ;类比向量 ,有
③实数 ,则 ;类比复数 ,有 ,则 .其中类比结论正确的命题个数为 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,

(1)证明:PA∥平面EDB

(2)证明:平面BDE平面PCB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加油站20名员工日销售量的频率分布直方图,如图所示:

1)补全该频率分布直方图在[2030)的部分,并分别计算日销售量在 [1020),[2030)的员工数;

2)在日销量为[1030)的员工中随机抽取2人,求这两名员工日销量在 [2030)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第 个图形包含 个小正方形.

(Ⅰ)求出
(Ⅱ)利用合情推理的“归纳推理思想”归纳出 的关系式,并根据你得到的关系式求 的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)|x﹣a|﹣x|x|+2a+1(a<0,)若存在x0∈[﹣1,1],使f(x0)≤0,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 .命题 :方程 表示焦点在 轴上的椭圆;命题 :圆锥曲线 的离心率 ,若命题 为真命题,求实数 的取值范围.

查看答案和解析>>

同步练习册答案