精英家教网 > 高中数学 > 题目详情

已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量=(xcos-ysin,xsin+ycos),叫做把点B绕点A逆时针方向旋转角得到点P

①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标

②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线x2-y2=1,求原来曲线C的方程.

答案:
解析:

  ①(0,-1)

  解: 2分

  

   6分

  

  解得x=0,y=-1 7分

  ②

  

   10分

  即 11分

  又x’2-y’2=1 12分

   13分

  化简得: 14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知对任意的平面向量,把
AB
绕其起点沿逆时针方向旋转θ角,得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ)
,叫做把点B绕点A逆时针方向旋转θ角得到点P
①已知平面内的点A(1,2),B(1+
2
,2-2
2
)
,把点B绕点A沿逆时针方向旋转
4
后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转
π
4
后得到的点的轨迹是曲线x2-y2=1,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年度广东省普宁第二中学高二上学期11月月考理科数学试卷 题型:解答题

(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P
①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P

①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标

②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省揭阳市普宁二中高二(上)11月月考数学试卷(理科)(解析版) 题型:解答题

已知对任意的平面向量,把绕其起点沿逆时针方向旋转θ角,得到向量,叫做把点B绕点A逆时针方向旋转θ角得到点P
①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线x2-y2=1,求原来曲线C的方程.

查看答案和解析>>

同步练习册答案