精英家教网 > 高中数学 > 题目详情
已知函数,f(X)=log2x的反函数为f-1(x),等比数列{an}的公比为2,若f-1(a2)•f-1(a4)=210,则2f(a1)+f(a2)+…+f(a2009=(  )
A、21004×2008B、21005×2009C、21005×2008D、21004×2009
分析:本题由函数f(X)=log2x可确定反函数f-1(x),从而利用f-1(a2)•f-1(a4)=210得到等比数列第二项与第四项的等式关系,并结合公比为2求出通项an=2n-1,由此求出f(a1)+f(a2)+…+f(a2009的值,进而可得答案.
解答:解:由f(X)=log2x得f-1(x)=2x,所以f-1(a2)•f-1(a4)=2a22a4=2a2+a4=210,所以a2+a4=10,
又公比q=2,所以a1=1,
故an=2n-1
所以f(a1)+f(a2)+…+f(a2009=log21+log221+log222+log223++log222008=1+2+3++2008=
(1+2008)×2008
2
=1004×2009;
所以2f(a1)+f(a2)+…+f(a2009)=21004×2009
故选D.
点评:本题主要结合反函数知识考查了对数函数的运算性质,并兼顾了对等比数列知识的考查,综合性较强,有一定难度,易在计算中出现失误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的反函数.定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”;若函数y=f(ax)与y=f-1(ax)互为反函数,则称y=f(x)满足“a积性质”.
(1)判断函数g(x)=x2+1(x>0)是否满足“1和性质”,并说明理由;
(2)求所有满足“2和性质”的一次函数;
(3)设函数y=f(x)(x>0)对任何a>0,满足“a积性质”.求y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示,则方程f[g(x)]=0有且仅有
6
个根;方程f[f(x)]=0有且仅有
5
个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为
5
4
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则y=f(x)的图象关于直线x=1对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③若y=f(x)为偶函数,且y=f(2+x)=-f(x),则y=f(x)的图象关于直线x=2对称;
④若y=f(x)为奇函数,且f(x)=f(-x-2),则y=f(x)的图象关于直线x=1对称.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是奇函数,当x>0时,f(x)=x3+1.设f(x)的反函数是y=g(x),则g(-28)=
-3
-3

查看答案和解析>>

同步练习册答案