精英家教网 > 高中数学 > 题目详情
已知命题p:函数y=logax在(0,+∞)上是增函数;命题q:关于x的方程x2-2ax+4=0有实数根.若p∧q为真,求实数a的取值范围.
分析:当命题p为真命题时,可得a>1 ①.当命题q为真命题时,可得△=4a2-16≥0,解得a≥2,或 a≤-2;②.再由p∧q为真,可得 ①和②同时成立,由此求得实数a的取值范围.
解答:解:当命题p:函数y=logax在(0,+∞)上是增函数,是真命题时,可得a>1 ①.
当命题q:关于x的方程x2-2ax+4=0有实数根,是真命题时,可得△=4a2-16≥0,解得a≥2,或 a≤-2②.
由于p∧q为真,故有 ①和②同时成立,
故有a≥2,即实数a的取值范围为[2,+∞).
点评:本题主要考查符合命题的真假,对数函数的单调性和定义域,二次函数的图象和性质应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数y=lgx2的定义域是R,命题q:函数y=(
13
)
x
的值域是正实数集,给出命题:①p或q;②p且q;③非p;④非q.其中真命题个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上单调递增.q:关于x的不等式ax2-ax+1>0解集为R.若p∧q假,p∨q真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=loga(1-2x)在定义域上单调递增,命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P∨Q是真命题,P∧Q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=log 0.5(x2+2x+a)的值域为R,命题q:函数y=(x-a)2在(2,+∞)上是增函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=lg(ax2-x+
a16
)定义域为R; 命题Q:函数y=(5-2a)x为增函数;若“p∨q”为真命题,“p∧q:”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案