精英家教网 > 高中数学 > 题目详情
如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=2AA1=4,点O是底面ABCD的中心,点E是A1D1的中点,点P是底面ABCD上的动点,且到直线OE的距离等于1.设点P的轨迹为L,则L的离心率等于   
【答案】分析:由题意可知点P在以OE为轴,半径为1的圆柱侧面上,点P又在底面ABCD上,得点P的轨迹是平面ABCD与圆柱侧面的交线,想象知其必为椭圆,由轴OE与ABCD成45°,可算得其离心率
解答:解:由题意可知:知点P的轨迹为椭圆,作EF⊥AD于点F,则EF=OF=2,△OEF为等腰直角三角形,得轴OE与平面ABCD所成的角为45°,
∵P的轨迹是椭圆,而半长轴长a=,短半轴长为b=1,
∴c2=a2-b2=1,
∴e==
故答案为:
点评:本题考查立体几何与椭圆的交汇,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当M为中点时,求证:B1M⊥平面MAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体ABCDABCD′中,截下一个棱锥CADD′,求棱锥CADD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BCAD′的两个平行平面将长方体分为体积相等的三个部分,那么FD′等于(  )

A.8        B.6    

C.4        D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BC和A′D′的两个平行平面将长方体分为体积相等的三个部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BC和A′D′的两个平行平面将长方体分为体积相等的三个部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

同步练习册答案