精英家教网 > 高中数学 > 题目详情

已知f(x)=x3+3bx2+3cx有两个极值点x1,x2,且x1∈[-1,0],x2∈[1,2],则f(1)的取值范围是


  1. A.
    (-10,-数学公式]
  2. B.
    [-数学公式,-数学公式]
  3. C.
    [-10,-数学公式]
  4. D.
    [-数学公式,10]
B
分析:根据函数f(x)的极值点的范围,对原函数求导,借助导函数所对应方程根的分布情况,列出对应的不等式组,然后可以直接求解,也可采用取特值排除不适合控制不等式组的选项.
解答:由f(x)=x3+3bx2+3cx得f(x)=3x2+6bx+3c,令f(x)=0得g(x)=x2+2bx+c=0,
∵x1∈[-1,0],x2∈[1,2],则
又f(1)=1+3b+3c+3(b+c)+1,取f(1)=-2,得 b+c=-1,b=-c-1,将b=-c-1分别代入上面不等式中的g(-1),
g(0),g(1),g(2)得到-1≤c≤0有解,说明f(1)=-2满足,所以可排除A,D.再取f(1)=-8,同理可得控制不等式组有解,故可排除C.
故选B.
点评:解题时需明确两点,一是极值点处的导数为0,再就是求导后能正确把导函数所对应方程根的分布情况转化为控制待求系数的不等式组.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案