精英家教网 > 高中数学 > 题目详情
已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>b>0)的左、右焦点,P为双曲线左支上一点,若
|PF2|2
|PF1|
的最小值为8a,则该双曲线的离心率的取值范围是(  )
A.(1,3)B.(1,2)C.(1,3]D.(1,2]
设|PF1|=m,则|PF2|=2a+m,且|PF1|≥c-a,
|PF2|2
|PF1|
=
(2a+m)2
m
=
4a2
m
+m+4a
(m≥c-a),
|PF2|2
|PF1|
的最小值为8a,
∴c-a≤2a,
∴e≤3,
∵e>1,
∴1<e≤3.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知P在双曲线
x2
a2
-
y2
9
=1上,双曲线的一条渐近线为直线y=
3
2
x,左、右焦点分别是F1,F2.若PF1=5,则PF2的长为(  )
A.1或9B.3或7C.8D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是双曲线
x2
4
-
y2
b2
=1
上一点,双曲线的一条渐近线为3x-2y=0,F1,F2分别是左、右焦点,若|PF1|=5,则P到双曲线右准线的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线
x2
16
-
y2
9
=1的左、右焦点分别为F1、F2,过右焦点F2的直线l交双曲线的右支于A、B两点,若|AB|=5,则△ABF1的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是双曲线16x2-9y2=144的焦点,P为双曲线上一点,若|PF1||PF2|=32,则∠F1PF2=(  )
A.
π
6
B.
π
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2是双曲线
x2
25
-
y2
24
=1
的左、右焦点,直线l过F1与左支交与P、Q两点,直线l的倾斜角为α,则|PF2|+|QF2|-|PQ|的值为(  )
A.28B.8
6
C.20D.随α大小而改变

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,焦点为F1(0,-2
2
),F2(0,2
2
),且离心率e=
2
,求双曲线的标准方程及其渐近线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F1,F2是双曲线C的两个焦点,过点F2的直线交双曲线C的一支于A,B两点,若△ABF1为等边三角形,则双曲线C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点在x轴上的双曲线,实轴长6,焦距长10,则双曲线的标准方程是(  )
A.
x2
64
-
y2
36
=1
B.
x2
36
-
y2
64
=1
C.
x2
16
-
y2
9
=1
D.
x2
9
-
y2
16
=1

查看答案和解析>>

同步练习册答案