精英家教网 > 高中数学 > 题目详情

(文科)长方体中,是底面对角线的交点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面
(Ⅲ) 求三棱锥的体积。

(Ⅰ) 根据线线平行证明线面平行;(Ⅱ)根据线线垂直证明线面垂直;(Ⅲ)  

解析试题分析:(Ⅰ)依题意:
在平面外.…2分
平面 ……3分
(Ⅱ)连结 
平面…………4分
又∵上,∴在平面
……5分
 ∴     
中,…6分
同理:中,
  …7分,∴平面……8分
(Ⅲ)∵平面∴所求体积
 …12分
考点:本题考查了空间中线面关系
点评:高考中的立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在三棱锥中,是边长为的正三角形,平面⊥平面分别为的中点.

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面底面 的中点,已知
(Ⅰ)求证:
(Ⅱ)在上求一点,使平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个圆与正方形的周长都为1,证明:圆的面积比正方形的面积大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,在四棱锥中,底面为平行四边形,中点,中点。

(1)求证:
(2)求证:
(3)求直线与平面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,,过动点A,垂足在线段上且异于点,连接,沿将△折起,使(如图2所示).

(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,在直三棱柱中,.棱上有两个动点E,F,且EF =" a" (a为常数).

(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;      
(Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,三棱柱的各棱长均为2,侧面底面,侧棱与底面所成的角为
(1) 求直线与底面所成的角;
(2) 在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案