【题目】已知钝角中,角A,B,C的对边分别为a,b,c,其中A为钝角,若,且.
(1)求角C;
(2)若点D满足,且,求的周长.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)的周期为,图象的一个对称中心为将函数图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所有图象向右平移个单位长度后得到函数的图象.
(1)求函数与的解析式;
(2)当,求实数与正整数,使在恰有2019个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中且.设.
(1)若,,,求方程在区间内的解集;
(2)若点是直线上的动点.当时,设函数的值域为集合,不等式的解集为集合.若恒成立,求实数的最大值;
(3)若函数满足“图像关于点对称,且在处取得最小值”,求、和满足的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,椭圆的离心率为,过椭圆的左焦点,且斜率为的直线,与以右焦点为圆心,半径为的圆相切.
(1)求椭圆的标准方程;
(2)线段是椭圆过右焦点的弦,且,求的面积的最大值以及取最大值时实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com