精英家教网 > 高中数学 > 题目详情

【题目】已知钝角中,角ABC的对边分别为abc,其中A为钝角,若,且.

1)求角C

2)若点D满足,且,求的周长.

【答案】1 2

【解析】

1)由正弦定理化边为角,化切为弦,结合已知条件求出关系,利用三角形的内角和关系结合两角和的正弦公式化简,求出角,进而求出角

2)由(1)结论结合余弦定理可得,利用的向量的模长关系,即可求出三边长;或再利用余弦定理再找一个关于的关系式,即可求解.

1)∵,∴,又

,∴

A为钝角,∴为锐角,

,∴

,∴

,∴B为锐角,故

,∴

2)∵,∴,又,由余弦定理知

,∴,∴

法一:∴

的周长为

法二:∵,∴,又,由余弦定理得

,∴

中,

联立①②得

的周长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)若曲线处的切线方程为,求的值;

(2)在(1)的条件下,求函数零点的个数;

(3)若不等式对任意都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点O轴正半轴为极轴,已知点P的直角坐标为(1,-5),C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.

(1).求直线l的参数方程及圆C的极坐标方程;

(2).试判断直线l与圆C有位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的周期为,图象的一个对称中心为将函数图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所有图象向右平移个单位长度后得到函数的图象.

1)求函数的解析式;

2)当,求实数与正整数,使恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中..

1)若,求方程在区间内的解集;

2)若点是直线上的动点.时,设函数的值域为集合,不等式的解集为集合.恒成立,求实数的最大值;

3)若函数满足“图像关于点对称,且在取得最小值”,求满足的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足

(1)求的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆的离心率为,过椭圆的左焦点,且斜率为的直线,与以右焦点为圆心,半径为的圆相切.

1)求椭圆的标准方程;

2)线段是椭圆过右焦点的弦,且,求的面积的最大值以及取最大值时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

,对任意的恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案