精英家教网 > 高中数学 > 题目详情

【题目】若函数y=f(x)的图象上存在不同两点M、N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)= 则此函数的“和谐点对”有(
A.0对
B.1对
C.2对
D.4对

【答案】B
【解析】解:若f(x)=

令f(x)+f(﹣x)=0,

若0<x<1,则﹣lnx﹣x3+3x=0,即lnx=﹣x3+3x,

作出y=lnx与y=﹣x3+3x的函数图象,

由图象可知两函数在(0,1)上无交点,

若x≥1,则lnx﹣x3+3x=0,即lnx=x3﹣3x,

作出y=lnx与y=x3﹣3x的函数图象,

由图象可知两函数在(1,+∞)上有1个交点,

所以,f(x)只有1对“和谐点对”.

故选B.

【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= e3x+me2x+(2m+1)ex+1有两个极值点,则实数m的取值范围是(
A.(﹣ ,1﹣
B.[﹣ ,1﹣ ]
C.(﹣∞,1﹣
D.(﹣∞,1﹣ )∪(1+ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 的值的一个程序框图,其中判断框内应填入的条件是(
A.i≤100
B.i>100
C.i>50
D.i≤50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD底面是一个棱长为2的菱形,且∠DAB=60°,各侧面和底面所成角均为60°,则此棱锥内切球体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (θ为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为( ),过点M的直线l与曲线C相交于A,B两点,若|MA|=2|MB|,求AB的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O为BD的中点.
(1)求证:CD∥平面POA;
(2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A﹣PD﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:
①一次性缴纳50万元,可享受9折优惠;
②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.
请通过计算,帮助王亮同学判断那种方案交纳的保费较低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴,并在两坐标系中取相同的长度单位,若直线l的极坐标方程是ρsin(θ+ )=2 ,且点P是曲线C: (θ为参数)上的一个动点.
(Ⅰ)将直线l的方程化为直角坐标方程;
(Ⅱ)求点P到直线l的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;

(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.

附:

查看答案和解析>>

同步练习册答案