精英家教网 > 高中数学 > 题目详情

【题目】如图1,直角梯形中,中,分别为边上的点,且.将四边形沿折起成如图2的位置,.

(1)求证:平面

(2)求平面与平面所成锐角的余弦值.

【答案】1)见解析;(2

【解析】

试题(1)取DE中点G,连接FG,AG平面,只需证平面AFG∥平面CBD,又平面平面,故只需证平面CBD平面CBD即可;

2)要求平面与平面所成锐角的余弦值,需找两平面的法向量,取中点为H,连接DH,可证, 故以中点H为原点,轴建立如图所示的空间直角坐标系,易知是平面的一个法向量,由可得平面的一个法向量为,然后由空间两向量夹角公式去求平面与平面所成锐角的余弦值。

试题解析:(1)证明:取DE中点G,连接FG,AGCG.因为 CFDG,所以FG∥CD.因为 CGAB, ,

所以AG∥BC.所以平面AFG∥平面CBD, 所以 AF∥平面CBD.

2)解: 中点为H,连接DH.,

..

中点H为原点,轴建立如图所示的空间直角坐标系,则所以的中点坐标为因为,所以易知是平面的一个法向量,设平面的一个法向量为

,

所以面与面所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中,.从数列中选出项并按原顺序组成的新数列记为,并称为数列项子列.例如数列的一个项子列.

1)试写出数列的一个项子列,并使其为等差数列;

2)如果为数列的一个项子列,且为等差数列,证明:的公差满足

3)如果为数列的一个项子列,且为等比数列,证明:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点

Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;

Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,动点P满足,设动点P的轨迹为,以动点P到点距离的最大值为长轴,以点为左、右焦点的椭圆为,则曲线和曲线的交点到轴的距离为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA⊥平面ABCD,四边形ABCD是矩形,,点F为PB中点,点E在边BC上移动.

(Ⅰ)求证:PD∥平面AFC;

(Ⅱ)若,求证:

(Ⅲ)若二面角的大小为60°,则CE为何值时,三棱锥的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

C. 垂直于同一条直线的两条直线相互垂直

D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面

分别为线段上的点,且

(1)证明:平面

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱的底面是平行四边形,且的中点,平面,若,试求异面直线所成角的余弦值_________

查看答案和解析>>

同步练习册答案