【题目】如图1,直角梯形中,中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,.
(1)求证:平面;
(2)求平面与平面所成锐角的余弦值.
【答案】(1)见解析;(2)。
【解析】
试题(1)取DE中点G,连接FG,AG,平面,只需证平面AFG∥平面CBD,又平面,平面,故只需证∥平面CBD,∥平面CBD即可;
(2)要求平面与平面所成锐角的余弦值,需找两平面的法向量,取中点为H,连接DH,可证, 故以中点H为原点,为轴建立如图所示的空间直角坐标系,易知是平面的一个法向量,由可得平面的一个法向量为,然后由空间两向量夹角公式去求平面与平面所成锐角的余弦值。
试题解析:(1)证明:取DE中点G,连接FG,AG,CG.因为 CFDG,所以FG∥CD.因为 CGAB, ,
所以AG∥BC.所以平面AFG∥平面CBD, 所以 AF∥平面CBD.
(2)解: 取中点为H,连接DH.,,
.,.
以中点H为原点,为轴建立如图所示的空间直角坐标系,则,,,所以的中点坐标为因为,所以易知是平面的一个法向量,设平面的一个法向量为
由
令则,,
,
所以面与面所成角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在数列中,.从数列中选出项并按原顺序组成的新数列记为,并称为数列的项子列.例如数列、、、为的一个项子列.
(1)试写出数列的一个项子列,并使其为等差数列;
(2)如果为数列的一个项子列,且为等差数列,证明:的公差满足;
(3)如果为数列的一个项子列,且为等比数列,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点.
(Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点、的坐标分别为和,动点P满足,设动点P的轨迹为,以动点P到点距离的最大值为长轴,以点、为左、右焦点的椭圆为,则曲线和曲线的交点到轴的距离为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PA⊥平面ABCD,四边形ABCD是矩形,,,点F为PB中点,点E在边BC上移动.
(Ⅰ)求证:PD∥平面AFC;
(Ⅱ)若,求证:;
(Ⅲ)若二面角的大小为60°,则CE为何值时,三棱锥的体积为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行
B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
C. 垂直于同一条直线的两条直线相互垂直
D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com