精英家教网 > 高中数学 > 题目详情
设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(1,0)的距离比点P到直线x=-2的距离小1,过点M的直线l与点P的轨迹方程交于A、B两点.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)是否存在直线l,使得以线段AB为直径的圆恰好经过坐标原点?若存在,请求出直线l的方程,若不存在,请说明理由.
(III)求证:S△OAB=S△OAM•|BM|.
分析:(I)利用抛物线的定义,即可得到点P的轨迹方程;
(Ⅱ)分类讨论,设出直线方程,代入抛物线方程,验证
OA
OB
=0是否成立即可;
(III)S△OAB=
1
2
•|OM|•|y1-y2|
,S△OAM•|BM|=
1
2
•|OM|•|y1|•(x2+1)
,化简可结论.
解答:(Ⅰ)解:∵点P到定点M(1,0)的距离比点P(x,y)(x≥0)到直线x=-2的距离小1,
∴由抛物线的定义,可得点P的轨迹方程为y2=4x;
(Ⅱ)解:当直线l的斜率不存在时,由题设可知直线l的方程是x=1,与抛物线方程联立,可得A(1,2),B(1,-2),不满足
OA
OB
=0;
当直线l的斜率存在时,设直线l的方程为y=k(x-1),代入抛物线方程,可得k2x2-(2k2+4)x+k2=0
设A(x1,y1),B(x2,y2),
∴x1+x2=
2k2+4
k2
,x1x2=1
∴y1y2=-4,∴x1x2+y1y2=-3≠0,不满足
OA
OB
=0
∴不存在直线l,使得以线段AB为直径的圆恰好经过坐标原点;
(III)证明:∵S△OAB=
1
2
•|OM|•|y1-y2|
=
1
2
|y1-y2|
=
|k(x1-x2)|
2

S△OAM•|BM|=
1
2
•|OM|•|y1|•(x2+1)
=
1
2
•|k(x1-1)|•(x2+1)
=
|k(x1x2+x1-x2-1)|
2
|k(x1-x2)|
2

∴S△OAB=S△OAM•|BM|.
点评:本题考查抛物线的定义,考查直线与抛物线的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(
1
2
,0)的距离比点P到x轴的距离大
1
2

(1)求点P的轨迹方程,并说明它表示什么曲线;
(2)若直线l与点P的轨迹相交于A、B两点,且
OA
OB
=0,点O到直线l的距离为
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P(x,y)(y≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(0,
1
2
)的距离比点P到x轴的距离大
1
2

(1)求点P的轨迹方程;
(2)若直线l:y=x+1与点P的轨迹相交于A、B两点,求线段AB的长;
(3)设点P的轨迹是曲线C,点Q(1,y0)是曲线C上一点,求过点Q的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州市学军中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(,0)的距离比点P到x轴的距离大
(1)求点P的轨迹方程,并说明它表示什么曲线;
(2)若直线l与点P的轨迹相交于A、B两点,且=0,点O到直线l的距离为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2007年天津市汉沽一中高三第一次调研数学试卷(解析版) 题型:解答题

设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(,0)的距离比点P到x轴的距离大
(1)求点P的轨迹方程,并说明它表示什么曲线;
(2)若直线l与点P的轨迹相交于A、B两点,且=0,点O到直线l的距离为,求直线l的方程.

查看答案和解析>>

同步练习册答案