精英家教网 > 高中数学 > 题目详情
17.关于平面向量,给出下列四个命题:
①单位向量的模都相等;
②对任意的两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,式子|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定成立;
③两个有共同的起点且相等的向量,其终点必定相同;
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$.
其中正确的命题的个数为(  )
A.1B.2C.3D.4

分析 ①根据单位向量的定义即可判断出正误;
②当$\overrightarrow{a}$与$\overrightarrow{b}$同向共线时,|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$,不成立|;
③根据相等的向量的意义即可判断出结论;
④由$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,可得$\overrightarrow{b}$•$(\overrightarrow{a}-\overrightarrow{c})$=0,于是$\overrightarrow{b}$⊥$(\overrightarrow{a}-\overrightarrow{c})$,或$\overrightarrow{a}$=$\overrightarrow{c}$或$\overrightarrow{b}$=$\overrightarrow{0}$,即可判断出正误.

解答 解:①单位向量的模都相等,正确;
②对任意的两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,式子|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|不一定成立,例如$\overrightarrow{a}$与$\overrightarrow{b}$同向共线时,|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
③两个有共同的起点且相等的向量,其终点必定相同,正确;
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{b}$•$(\overrightarrow{a}-\overrightarrow{c})$=0,∴$\overrightarrow{b}$⊥$(\overrightarrow{a}-\overrightarrow{c})$,或$\overrightarrow{a}$=$\overrightarrow{c}$或$\overrightarrow{b}$=$\overrightarrow{0}$,因此不正确.
其中正确的命题的个数为2.
故选:B.

点评 本题考查了向量相等、单位向量、向量的数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差为2的等差数列,且a1,a4,a13成等比数列,数列{$\frac{{b}_{n}}{{a}_{n}}$}是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn,若不等式$\frac{{R}_{n}}{n}$≤λ•3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{{x}^{\frac{1}{2}},x≥0}\\{-x,x<0}\end{array}\right.$,则f[f(-4)]的值是(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=4,c=2$\sqrt{3}$,cosA=sin1380°,则a等于(  )
A.7B.2$\sqrt{13}$C.2$\sqrt{6}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA=$\frac{3\sqrt{5}}{5}$csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在直角坐标系中,P点的坐标为($\frac{3}{5}$,$\frac{4}{5}$),Q是第三象限内一点,|OQ|=1且∠POQ=$\frac{3π}{4}$,则Q点的横坐标为-$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各角中与-$\frac{π}{4}$终边相同的是(  )
A.-$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{7π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆(x+2)2+y2=4与圆(x-2)2+(y-3)2=9的位置关系为(  )
A.外切B.相交C.内切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1),$\overrightarrow{u}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{v}$=2$\overrightarrow{a}$-$\overrightarrow{b}$.
(Ⅰ)当$\overrightarrow{u}$∥$\overrightarrow{v}$时,求x的值;
(Ⅱ)当$\overrightarrow{u}$⊥$\overrightarrow{v}$时且x<0时,求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角α.

查看答案和解析>>

同步练习册答案