【题目】已知椭圆 上的动点P与其顶点 , 不重合. (Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.
【答案】解:(Ⅰ)证明:设P(x0 , y0),则 . 所以直线PA与PB的斜率乘积为 .…(4分)
(Ⅱ)依题直线OM,ON的斜率乘积为- .
① 当直线MN的斜率不存在时,直线OM,ON的斜率为 ,设直线OM的方程
是 ,由 得 ,y=±1.
取 ,则 .所以△OMN的面积为 .
②当直线MN的斜率存在时,设直线MN的方程是y=kx+m,
由 得(3k2+2)x2+6kmx+3m2﹣6=0.
因为M,N在椭圆C上,
所以△=36k2m2﹣4(3k2+2)(3m2﹣6)>0,解得3k2﹣m2+2>0.
设M(x1 , y1),N(x2 , y2),则 , . = .
设点O到直线MN的距离为d,则 .
所以△OMN的面积为 …①.
因为OM∥PA,ON∥PB,直线OM,ON的斜率乘积为- ,所以 .
所以 = .
由 ,得3k2+2=2m2…②
由①②,得 .
综上所述,
【解析】(Ⅰ)设点设P(x0 , y0),从而可得直线PA与PB的斜率乘积为 (Ⅱ)设方程为y=kx+m,由两点M,N满足OM∥PA,ON∥PB及(Ⅰ)得直线OM,ON的斜率乘积为﹣ ,可得到m、k的关系,再用弦长公式及距离公式,求出△OMN的底、高,表示:△OMN的面积即可.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=1﹣ ,其中n∈N* .
(Ⅰ)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式an;
(Ⅱ)设Cn= ,数列{CnCn+2}的前n项和为Tn , 是否存在正整数m,使得Tn< 对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M是直线l:x=﹣1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N (Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18﹣36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量 | 频数 | 频率 |
0至5个 | 0 | 0 |
6至10个 | 30 | 0.3 |
11至15个 | 30 | 0.3 |
16至20个 | a | c |
20个以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(x)=f( )且当x∈[ ,1]时,f(x)=lnx,若当x∈[ ]时,函数g(x)=f(x)﹣ax与x轴有交点,则实数a的取值范围是( )
A.[﹣ ,0]
B.[﹣πlnπ,0]
C.[﹣ , ]
D.[﹣ ,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,P(x,y)为函数y=1+lnx图象上一点,记直线OP的斜率k=f(x). (Ⅰ)若函数f(x)在区间(m,m+ )(m>0)上存在极值,求实数m的取值范围;
(Ⅱ)当x≥1时,不等式f(x)≥ 恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足bn=an+1﹣an(n=1,2,3,…).
(1)若bn=10﹣n,求a16﹣a5的值;
(2)若 且a1=1,则数列{a2n+1}中第几项最小?请说明理由;
(3)若cn=an+2an+1(n=1,2,3,…),求证:“数列{an}为等差数列”的充分必要条件是“数列{cn}为等差数列且bn≤bn+1(n=1,2,3,…)”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工艺品厂要设计一个如图Ⅰ所示的工艺品,现有某种型号的长方形材料如图Ⅱ所示,其周长为4m,这种材料沿其对角线折叠后就出现图Ⅰ的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为
S2 , 折叠后重合部分△ACP的面积为S1 .
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com