精英家教网 > 高中数学 > 题目详情
1.在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(  )
x23456
y0.971.591.982.352.61
A.y=log2xB.y=2xC.$y=\frac{1}{2}({{x^2}-1})$D.y=2.61cosx

分析 根据题目中各函数的基本特征,对表中数据进行分析、判断即可.

解答 解:对于A,函数y=log2x,是对数函数,增长速度缓慢,且在x=2时y=1,x=4时y=2,基本符合要求;
对于B,函数y=2x是指数函数,增长速度很快,且在x=2时y=4,x=4时y=16,代入值偏差较大,不符合要求;
对于C,函数y=$\frac{1}{2}$(x2-1)是二次函数,且当x=2时y=1.5,x=4时y=7.5,代入值偏差较大,不符合要求;
对于D,函数y=2.61cosx是周期函数,且在[2,3]内是减函数,x=3时y<0,x=4时y<0,不符合要求.
故选:A.

点评 本题考查了常见的基本初等函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b-a的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各式的值:
(1)2$\sqrt{3}×\root{3}{{3\frac{3}{8}}}-\sqrt{12}$
(2)(log25+log4125)•$\frac{{{{log}_3}2}}{{{{log}_{\sqrt{3}}}5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$cos(-\frac{π}{3})•cos(π+\frac{π}{3})•cos(π-\frac{π}{3})$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于实数m,m>0,存在函数f(x)=ax2(a>0)图象上两点A、B,点A、B横坐标分别为1、m,使得$\overrightarrow{OA}$=λ(|$\overrightarrow{OB}$|$\overrightarrow{OC}$+|$\overrightarrow{OC}$|$\overrightarrow{OB}$)(λ为常数),其中点C(c,0)(c>0),则实数m的取值范围为(  )
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}\right.$,则f(log25)=(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{5}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x+x-1=3,那么x2-x-2的值为(  )
A.$±3\sqrt{5}$B.$-\sqrt{5}$C.$3\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{π}{6}$<α<$\frac{2π}{3}$,cos(α+$\frac{π}{3}$)=m(m≠0),则tan($\frac{2}{3}$π-α)-$\frac{\sqrt{{1-m}^{2}}}{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$,求:$\frac{|\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{a}-2\overrightarrow{b}|}{|\overrightarrow{a}|}$的最小值.

查看答案和解析>>

同步练习册答案