【题目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函数f(x)=a·b的图象关于直线对称,求函数f(2x)在上的值域.
【答案】(1) ;(2) .
【解析】试题分析:
(1)由题意,可求解,再根据
,即可求解在的值域.
(2)由,关于对称,求得,进而得到函数的解析式,即可求解函数
试题解析:
(1)当m=1时,a=(sin x,cos x),又b=(3,-1),
且a∥b.
∴-sin x-3cos x=0,即tan x=-3,
∵2sin2x-3cos2x====,
∴2sin2x-3cos2x=.
(2)∵f(x)=a·b=3sin x-mcos x的图象关于直线
x=对称,
∴f=f,即f=f,
即3=+m,得m=,
则f(x)=2=2sin,
∴f(2x)=2sin,
∵x∈,∴2x-∈,
∴当x=时,f(2x)取最大值为2;当x=时,f(2x)取最小值为-.
即函数f(2x)在上的值域为[-,2].
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|ax-2|.
(1)当a=2时,解不等式f(x)>x+1;
(2)若关于x的不等式f(x)+f(-x)< 有实数解,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·洛阳市统考)已知数列{an}的前n项和为Sn,an≠0,a1=1,且2anan+1=4Sn-3(n∈N*).
(1)求a2的值并证明:an+2-an=2;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知椭圆C: (a>b>0)的左、右焦点分别为F1,F2,离心率为,直线y=x+b截得椭圆C的弦长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(m,0)作圆x2+y2=1的切线,交椭圆C于点A,B,求|AB|的最大值,并求取得最大值时m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为,焦距为2c,且c, ,2成等比数列.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)点B坐标为(0, ),问是否存在过点B的直线l交椭圆C于M,N两点,且满足 (O为坐标原点)?若存在,求出此时直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(其中为常数).
(1)若直线与曲线恰好有一个公共点,求实数的值;
(2)若,求直线被曲线截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数),直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈.
(1)求θ的值;
(2)若射线OA与直线l相交于点B,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=a-2ln x(a∈R).
(Ⅰ)当a=2时,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若a>,且m,n分别为f(x)的极大值和极小值,S=m-n,求证:S<.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com