精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,BC=
2
,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1
(Ⅰ)求证:CD=C1D;
(Ⅱ)求二面角A1-B1D-P的平面角的正弦值.
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离
分析:(Ⅰ)连接B1A交BA1于O,由已知条件推导出△ACD≌△PC1D,由此能够证明CD=C1D;
(Ⅱ)以A1为坐标原点,以A1B1,A1C1A1A所在直线建立空间直角坐标系,利用向量法能够求出二面角A1-B1D-P的正弦值.
解答: (Ⅰ)证明:连接B1A交BA1于O,
∵PB1∥平面BDA1,B1P?面AB1P,面AB1P∩面BA1D=OD,…(2分)
∴B1P∥OD,又O为B1A的中点,
∴D为AP中点,∴C1为A1P中点,…(3分)
∴△ACD≌△PC1D,∴CD=C1D.…(4分)
(Ⅱ)解:∵在直三棱柱ABC-A1B1C1中,BC=
2
,AB=AC=1

∴AB⊥AC,…(5分)
以A1为坐标原点,以A1B1,A1C1A1A所在直线建立空间直角坐标系如图所示.
由(Ⅰ)知C1为A1P中点,
∴A1(0,0,0),B1(1,0,0),D(0,1,
1
2
)
,P(0,2,0),…(6分)
A1B1
=(1,0,0)
A1D
=(0,1,
1
2
),
设平面A1B1D的法向量
m
=(x,y,z)

m
A1B1
m
A1D

x=0
y+
1
2
z=0
,取z=2,得y=-1,∴
m
=(0,-1,2)
…(8分)
PB1
=(1,-2,0)
PD
=(0,-1,
1
2
)

设平面PB1D的法向量
n
=(x1y1z1)

n
PB1
=0
n
PD
=0

x2-2y2=0
-y2+
1
2
z2=0
,取x=2,得y=1,2,
∴平面PB1D的法向量
n
=(2,1,2)
…(10分)
设二面角A1-B1D-P平面角为θ,
cosθ=
m
n
|
m
||
n
|
=-
5
5
,…(11分)
sinθ=
1-cos2θ
=
2
5
5
.…(12分)
点评:本题考查线段相等的证明,考查二面角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
2x-y-2≥0
x-2y+2≤0
x+y-13≤0
,则z=xy的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且当x<0时,f(x)=x2+2x,则f(1)=(  )
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体ABCD中,已知AB=x,该四面体的其余五条棱的长度均为2,则下列说法中错误的是(  )
A、棱长x的取值范围是:0<x<2
3
B、该四面体一定满足:AB⊥CD
C、当x=2
2
时,该四面体的表面积最大
D、当x=2时,该四面体的体积最大

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)对任意n∈N*成立,令bn=an+1-an,且{bn}是等比数列.
(1)求实数k的值;
(2)求数列{an}的通项公式;
(3)求和:Sn=b1+2b2+3b3+…nbn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知AB=10,AC=14,B=
π
3
,D是BC边上的一点,DC=6.
(Ⅰ)求∠ADB的值;
(Ⅱ)求sin∠DAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
100
+
y2
25
=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧),点P在椭圆E上.
(Ⅰ)求以原点O为顶点,椭圆的右焦点为焦点的抛物线的方程;
(Ⅱ)求以原点O为圆心,与直线AB相切的圆的方程;
(Ⅲ)若四边形ABCP为梯形,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+4x+5,若二次函数y=g(x)满足:①y=f(x)与y=g(x)的图象在点P(1,10)处有公共切线;②y=f(x)+g(x)是R上的单调函数.则g(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x∈Z|1≤x≤5},A={1,2,3},∁UB={1,2},则A∩B(  )
A、{1,2}
B、{1,3}
C、{3}
D、{1,2,3}

查看答案和解析>>

同步练习册答案