已知函数,为函数的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;
(2)若函数,求函数的单调区间.
(1),;(2)见解析.
解析试题分析:(1)先对原函数进行求导,易知点A坐标,又由曲线y=f(x)在A点处的切线方程是,可得,解得的值;(2)先写出的函数解析式,再对函数求导,然后对a分和两种情况讨论,列表求单调区间.
科目:高中数学
来源:
题型:解答题
已知函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1)∵,∴. 1分
∵在处切线方程为,∴, 3分
∴,. (各1分) 5分
(2).
. 7分
①当时,,
的单调递增区间为,单调递减区间为. 9分0 - 0 + 极小值
②当时,令,得或 10分
(ⅰ)当,即时,
⑴ 求函数的单调区间;
⑵ 如果对于任意的,总成立,求实数的取值范围;
⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号