精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个焦点为,离心率为.

1)求的标准方程;

2)若动点外一点,且的两条切线相互垂直,求的轨迹的方程;

3)设的另一个焦点为,自直线上任意一点引(2)所求轨迹的一条切线,切点为,求证:.

【答案】123)证明见解析

【解析】

1)根据离心率和焦点坐标可求得的值,进而得到椭圆的方程;

2)设,切点分别为,对点的位置进行讨论,即切线的斜率不存在和存在时;当设切线方程为代入椭圆的方程得到关于的二次方程,利用直线互相垂直得到的关系,从而得到点的轨迹的方程;

(3)设,将都用进行表示,即可得答案.

1)设

由题设,得,所以

所以的标准方程为.

2)设,切点分别为

时,设切线方程为

联立方程,得

消去,得,①

关于的方程①的判别式

化简,得,②

关于的方程②的判别式

因为在椭圆外,

所以,即,所以

关于的方程②有两个实根分别是切线的斜率.

因为,所以,即,化简为.

时,可得,满足

所以的轨迹方程为.

3)如图,,设

所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记123456,则红球上的数字之和小于黑球上的数字之和的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)

1)若曲线在点处的切线平行于轴,求的值;

2)求函数的极值;

3)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 其中R为实数集,Q为有理数集.则关于函数有如下四个命题,正确的为( )

A.函数是偶函数

B.,,恒成立

C.任取一个不为零的有理数T,对任意的恒成立

D.不存在三个点,,,使得为等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.

(1)当.

①求数列的通项公式;

②若,求数列的前项的和

(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果前一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为,假设互不相等,且假定各人能否完成任务的事件相互独立.

(1)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?

(2)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的数学期望达到最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中e为自然对数的底).

1)若上单调递增,求实数a的取值范围;

2)若,证明:存在唯一的极小值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为).

(I)求直线的极坐标方程及曲线的直角坐标方程;

(Ⅱ)已知是直线上的一点,是曲线上的一点, ,若的最大值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若满足,则称数列“0-1数列.定义变换“0-1数列中原有的每个1都变成01,原有的每个0都变成10.例如:1,0,1,则“0-1数列,令

3

) 若数列求数列

) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由;

)若01,记数列中连续两项都是0的数对个数为.求关于的表达式.

查看答案和解析>>

同步练习册答案