精英家教网 > 高中数学 > 题目详情
3.如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且AM:MB=1:2,E为PB的中点.
(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出$\frac{AN}{NP}$的值;若不存在,请说明理由.

分析 (1)取棱AP中点F,连接DF,EF,证明四边形EFDC为平行四边形,可得CE∥DF,即可证明CE∥平面ADP;
(2)证明CE⊥平面PAB,利用CN∥DF,可得DF⊥平面PAB,即可证明平面PAD⊥平面PAB;
(3)存在,$\frac{AN}{NP}=\frac{4}{7}$.取BC中点O,连结AO交MD于Q,连结NQ,证明NQ⊥平面ABCD,即可得出结论.

解答 (1)证明:取棱AP中点F,连接DF,EF.
∵EF为△PAB的中位线,∴EF∥AB,且$EF=\frac{1}{2}AB$
∵CD∥AB,且$CD=\frac{1}{2}AB$,∴EF∥CD,且EF=CD,
∴四边形EFDC为平行四边形,∴CE∥DF
∵DF?平面ADP,CE?平面ADP,
∴CE∥平面ADP
(2)证明:由(1)可得CE∥DF
∵PC=BC,E为PB的中点,∴CE⊥PB
∵AB⊥BC,平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB?平面ABCD
∴AB⊥平面PBC  
又∵CE?平面PBC,
∴AB⊥CE
又∵CE⊥PB,AB∩PB=B,AB,PB?平面PBC,
∴CE⊥平面PAB
∵CN∥DF,
∴DF⊥平面PAB 
又∵DF?平面PAD,
∴平面PAD⊥平面PAB;
(3)解:存在,$\frac{AN}{NP}=\frac{4}{7}$.
证明:取BC中点O,连结AO交MD于Q,连结NQ,
在平面ABCD中由平几得$\frac{AQ}{QO}=\frac{4}{7}$,∴$\frac{AN}{NP}=\frac{AQ}{QO}∴NQ$∥OP.
∵O为等腰△PBC底边上的中点,∴PO⊥BC,
∵PBC⊥底面ABCD,PO?平面PBC,平面PBC∩平面ABCD=BC,
∴PO⊥平面ABCD,∴NQ⊥平面ABCD,
∵NQ?平面DMN,∴平面DMN⊥平面ABC.

点评 本题考查线面垂直、线面平行,面面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求函数$y={4^{x-\frac{1}{2}}}-3•{2^x}+5$在x∈[-1,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题P:|1-a|<6,命题Q:{x|x2+(a+2)x+1=0}∩R+=∅.命题P真Q假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车.每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年初投入了电力型公交车120辆,混合动力型公交车300辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入m辆.设an,bn分别为第n年投入的电力型公交车,混合动力型公交车的数量,设Sn,Tn分别为n年里投入的电力型公交车,混合动力型公交车的总数量.
(1)求Sn,Tn,并求n年里投入的所有新公交车的总数Fn
(2)该市计划用8年的时间完成全部更换,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若关于x的不等式x2+ax-a-2>0和2x2+2(2a+1)x+4a2+1>0的解集依次为A和B,那么使得A=R和B=R至少有一个成立的实数a(  )
A.可以是R中任何一个数
B.有有限个
C.有无穷多个,但不是R中任何一个数都满足
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.化简:${({\frac{2}{3}})^0}+{2^{-2}}×{({\frac{9}{16}})^{-\frac{1}{2}}}+(lg8+lg125)$=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.ABCD矩形,AB=2,AD=4,M为AD中点.F在线段MD上动,将△ABF沿BF折起,使A在面BCDF内射影O在BC上,BO=t.则t∈[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.4月份,有一款服装投入某商场销售,4月1日该款服装仅售出10件,而后,每天销售的件数分别递增25件,到12日销售量最大后,每天销售的件数分别递减15件,问到月底共售出多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

同步练习册答案