精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若方程的实根个数不少于2个,证明:

2)若处导数相等,求的取值范围,使得对任意的,恒有成立.

【答案】1)证明见解析;(2

【解析】

1)根据导数求出函数的单调性及最值,分析函数的大致图象,即可求出满足条件的的取值范围;

2)先由题意知不单调得,分两种情况,研究的最大值,从而得证.

1)函数的导函数为:.

函数的导函数为:.

时,单调递增;

单调递减

因为.

所以有两个不同的实数根(其中.

,即上单调递减,在上单调递减;

,即上单调递增.

又因为

所以,

即有实根个数不少于2

由题意得,.

因为,所以.

.

2)函数的导函数.

由题意得,不单调

所以,

函数的导函数为:.

单调递增:单调递减

所以a的取值范围是

因为.

所以.

得,.

,其中.

,函数的导函数

.上单调递增

所以,..

因此,.

.上单调递减.

,则

.上单调递减.

所以

,因为,所以必有,使得当时,

上单调递增,这与恒成立矛盾.

综上,.(开闭区间不作要求)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,过点的直线交于两点.

1)若直线与圆相切,求直线的方程;

2)若直线轴的交点为,且,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为

1)设椭圆的左右焦点分别为,点在椭圆上运动,求的值;

2)设直线和圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形组成的,将它沿虚线对折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,右顶点,上顶点为B,左右焦点分别为,且,过点A作斜率为的直线l交椭圆于点D,交y轴于点E.

1)求椭圆C的方程;

2)设P的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求a的取值范围;

(Ⅱ)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,右顶点,上顶点为B,左右焦点分别为,且,过点A作斜率为的直线l交椭圆于点D,交y轴于点E.

1)求椭圆C的方程;

2)设P的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求曲线C的极坐标方程和直线l的直角坐标方程;

2)若射线与曲线C交于点A(不同于极点O,与直线l交于点B,求的最大值.

查看答案和解析>>

同步练习册答案