【题目】已知函数.
(1)将函数的图像向右平移个单位得到函数的图像,若,求函数的值域;
(2)已知,分别为中角的对边,且满足,求的面积.
【答案】(1);(2).
【解析】
试题分析:化简,(1)平移得,又当时,;当时,所求值域为;(2)由正弦定理得: ,由 .
试题解析:..........1分
=......................3分
(1)平移可得,..............................4分
∵,∴,....................5分
当时,;当时,................6分
∴所求值域为...............7分
(2)由已知及正弦定理得:.................. 8分
∴,∵,∴,由得,又,
∴………………………………………10分
由正弦定理得:,......................................11分
∴................ 12分
科目:高中数学 来源: 题型:
【题目】选修:坐标系与参数方程
已知曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为.
(Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;
(Ⅱ)若曲线C经过伸缩变换后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数是奇函数,函数的定义域为.
(1)求的值;
(2)若在上单调递减,根据单调性的定义求实数的取值范围;
(3)在(2)的条件下,若函数在区间上有且仅有两个不同的零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(x,y)在映射f的作用下的像是(x+y,xy).
(1)求(-2,3)在f作用下的像;
(2)若在f作用下的像是(2,-3),求它的原像.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.
(ⅰ)利用该正态分布,求P(187.8<Z<212.2);
(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).
附: ≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com